Литосферные плиты: теория тектоники и ее основные положения. Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из

тектонический разлом литосферный геомагнитный

Начиная с раннего протерозоя скорость движения литосферных плит последовательно снижалась с 50 см/год до ее современного значения около 5 см/год.

Снижение средней скорости движения плит будет происходить и далее, вплоть до того момента, когда благодаря увеличению мощности океанических плит и их трению друг о друга оно вообще не прекратится. Но произойдет это, по-видимому, только через 1-1,5 млрд лет.

Для определения скоростей движения литосферных плит обычно используют данные по расположению полосчатых магнитных аномалий на океанском дне. Эти аномалии, как теперь установлено, появляются в рифтовых зонах океанов благодаря намагничиванию излившихся на них базальтов тем магнитным полем, которое существовало на Земле в момент излияния базальтов.

Но, как известно, геомагнитное поле время от времени меняло направление на прямо противоположное. Это приводило к тому, что базальты, излившиеся в разные периоды инверсий геомагнитного поля, оказывались намагниченными в противоположные стороны.

Но благодаря раздвижению океанского дна в рифтовых зонах срединно-океанических хребтов более древние базальты всегда оказываются отодвинутыми на бoльшие расстояния от этих зон, а вместе с океанским дном отодвигается от них и "вмороженное" в базальты древнее магнитное поле Земли.

Рис.

Раздвижение океанической коры вместе с разнонамагниченными базальтами обычно развивается строго симметрично по обе стороны от рифтового разлома. Поэтому и связанные с ними магнитные аномалии также располагаются симметрично по обоим склонам срединно-океанических хребтов и окружающих их абиссальных котловин. Такие аномалии теперь можно использовать для определения возраста океанского дна и скорости его раздвижения в рифтовых зонах. Однако для этого необходимо знать возраст отдельных инверсий магнитного поля Земли и сопоставить эти инверсии с наблюдаемыми на океанском дне магнитными аномалиями.

Возраст магнитных инверсий был определен по детальным палеомагнитным исследованиям хорошо датированных толщ базальтовых покровов и осадочных пород континентов и базальтов океанского дна. В результате сопоставления полученной таким путем геомагнитной временной шкалы с магнитными аномалиями на океанском дне удалось определить возраст океанической коры на большей части акваторий Мирового океана. Все океанические плиты, сформировавшиеся раньше поздней юры, уже успели погрузиться в мантию под современными или древними зонами поддвига плит, и, следовательно, не сохранилось на океанском дне и магнитных аномалий, возраст которых превышал бы 150 млн лет.


Приведенные выводы теории позволяют количественно рассчитывать параметры движения в начале двух смежных плит, а затем и для третьей, взятой в паре с одной из предыдущих. Таким путем постепенно можно вовлечь в расчет главные из выделенных литосферных плит и определить взаимные перемещения всех плит на поверхности Земли. За рубежом такие расчеты были выполнены Дж. Минстером и его коллегами, а в России - С.А. Ушаковым и Ю.И. Галушкиным. Оказалось, что с максимальной скоростью океанское дно раздвигается в юго-восточной части Тихого океана (возле о. Пасхи). В этом месте ежегодно наращивается до 18 см новой океанической коры. По геологическим масштабам это очень много, так как только за 1 млн лет таким путем формируется полоса молодого дна шириной до 180 км, при этом на каждом километре рифтовой зоны за то же время изливается примерно 360 км3 базальтовых лав! По этим же расчетам Австралия удаляется от Антарктиды со скоростью около 7 см/год, а Южная Америка от Африки - со скоростью около 4 см/год. Отодвигание Северной Америки от Европы происходит медленнее - 2-2,3 см/год. Еще медленнее расширяется Красное море - на 1,5 см/год (соответственно здесь меньше изливается и базальтов - всего 30 км3 на каждый погонный километр Красноморского рифта за 1 млн лет). Зато скорость "столкновения" Индии с Азией достигает 5 см/год, чем объясняются развивающиеся на наших глазах интенсивные неотектонические деформации и рост горных систем Гиндукуша, Памира и Гималаев. Эти деформации и создают высокий уровень сейсмической активности всего региона (тектоническое влияние столкновения Индии с Азией сказывается и далеко за пределами самой зоны столкновения плит, распространяясь вплоть до Байкала и районов Байкало-Амурской магистрали). Деформации Большого и Малого Кавказа вызываются давлением Аравийской плиты на этот район Евразии, однако скорость сближения плит здесь существенно меньше - всего 1,5-2 см/год. Поэтому меньшей здесь оказывается и сейсмическая активность региона.


Современными геодезическими методами, включая космическую геодезию, высокоточные лазерные измерения и другими способами установлены скорости движения литосферных плит и доказано, что океанические плиты движутся быстрее тех, в структуру которых входит континент, причем, чем толще континентальная литосфера, тем скорость движения плиты ниже.

Поверхностная оболочка Земли состоит из частей - литосферных или тектонических плит. Они представляют собой целостные крупные блоки, находящиеся в непрерывном движении. Это приводит к возникновению различных явлений на поверхности земного шара, в результате которых неизбежно меняется рельеф.

Тектоника плит

Тектонические плиты - это составные части литосферы, отвечающие за геологическую активность нашей планеты. Миллионы лет назад они представляли собой единое целое, составляя крупнейший сверхконтинент под названием Пангея. Однако в результате высокой активности в недрах Земли этот материк раскололся на континенты, которые удалились друг от друга на максимальное расстояние.

По версии ученых, через несколько сотен лет этот процесс пойдет в обратном направлении, и тектонические плиты вновь начнут совмещаться друг с другом.

Рис. 1. Тектонические плиты Земли.

Земля является единственной планетой в Солнечной системе, чья поверхностная оболочка разбита на отдельные части. Толщина тектонических достигает несколько десятков километров.

Согласно тектонике - науке, изучающей литосферные пластины, огромные участки земной коры со всех сторон окружены зонами повышенной активности. На стыках соседних плит и происходят природные явления, которые чаще всего вызывают масштабные катастрофические последствия: извержения вулканов, сильнейшие землетрясения.

Движение тектонических плит Земли

Основной причиной, по которой вся литосфера земного шара находится в непрерывном движении, является тепловая конвекция. В центральной части планеты царят критически высокая температура. При нагревании верхние слои вещества, находящегося в недрах Земли, поднимаются, в то время как верхние слои, уже охлажденные, опускаются к центру. Непрерывная циркуляция вещества и приводит в движение участки земной коры.

ТОП-1 статья которые читают вместе с этой

Скорость движения литосферных плит составляет примерно 2-2,5 см в год. Поскольку их движение происходит на поверхности планеты, то на границе их взаимодействия возникают сильные деформации в земной коре. Как правило, это приводит к формированию горных хребтов и разломов. Например, на территории России так были образованы горные системы Кавказ, Урал, Алтай и другие.

Рис. 2. Большой Кавказ.

Существует несколько типов движения литосферных плит:

  • Дивергентное - две платформы расходятся, образуя подводную горную гряду или провал в земле.
  • Конвергентное - две пластины сближаются, при этом более тонкая погружается под более массивную. При этом формируются горные массивы.
  • Скользящее - две пластины движутся в противоположных направлениях.

Африка буквально раскалывается на две части. Были зафиксированы большие трещины внутри земли, простирающиеся через большую часть территории Кении. Согласно прогнозам ученых, примерно через 10 миллионов лет африканский континент как единое целое прекратит свое существование.

Тогда наверняка вы бы хотели знать, что такое литосферные плиты .

Итак, литосферные плиты представляют собой огромные блоки, на которые делится твердый поверхностный слой земли. Учитывая тот факт, что скальные породы под ними расплавлены, плиты медленно, со скоростью от 1 до 10 сантиметров в год, двигаются.

На сегодняшний день насчитывают 13 крупнейших литосферных плит, которые покрывают 90% земной поверхности.

Крупнейшие литосферные плиты:

  • Австралийская плита - 47 000 000 км²
  • Антарктическая плита - 60 900 000 км²
  • Аравийский субконтинент - 5 000 000 км²
  • Африканская плита - 61 300 000 км²
  • Евразийская плита - 67 800 000 км²
  • Индостанская плита - 11 900 000 км²
  • Плита Кокос - 2 900 000 км²
  • Плита Наска - 15 600 000 км²
  • Тихоокеанская плита - 103 300 000 км²
  • Северо-Американская плита - 75 900 000 км²
  • Сомалийская плита - 16 700 000 км²
  • Южно-Американская плита - 43 600 000 км²
  • Филиппинская плита - 5 500 000 км²

Тут надо сказать, что существует земная кора континентальная и океаническая. Некоторые плиты состоят исключительно из одного типа коры (например, тихоокеанская плита), а некоторые из смешанных типов, когда плита начинается в океане и плавно переходит на континент. Толщина этих пластов составляет 70-100 километров.

Литосферные плиты плавают на поверхности частично расплавленного слоя земли – мантии. Когда плиты расходятся, трещины между ними заполняет жидкая порода, которая называется магмой. Когда магма затвердевает, она образует новые кристаллические породы. По поводу магмы поговорим подробнее в статье о вулканах.

Карта литосферных плит

Крупнейшие литосферные плиты (13 шт.)

В начале XX века американец Ф.Б. Тейлор и немец Альфред Вегенер одновременно пришли к выводу, что расположение континентов медленно изменяется. К слову сказать, именно это, в большой степени, является . Но ученые не смогли объяснить, как это происходит, до 60 годов двадцатого века, пока не выработалось учение о геологических процессах на морском дне.


Карта расположения литосферных плит

Именно ископаемые сыграли здесь главную роль. На разных материках были найдены окаменелые останки животных, которые явно не могли переплывать океан. Это вызвало предположение о том, что когда-то все материки были соединены и животные спокойно переходили между ними.

Подписывайтесь на . У нас много интересных фактов и увлекательных историй из жизни людей.

Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым "чехлом". Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты - это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки - это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит - это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров - на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде "Геодинамика", в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне "ядро-мантия" происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления - в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.

Длительное время в геологической науке господствовала гипотеза о неизменном положении континентов и океанов. Было принято считать, что те и другие возникли сотни миллионов лет назад и никогда не меняли своего положения. Лишь изредка, когда высота континентов существенно снижалась, а уровень Мирового океана повышался, море наступало на низменности и затапливало их.

Среди геологов утвердилось мнение, что земная кора испытывает только медленное вертикальное перемещение и благодаря этому создается наземный и подводный рельеф.

С мыслью, что «земная твердь» находится в беспрестанном вертикальном движении, за счет которого формируется рельеф Земли, абсолютное большинство геологов согласилось давно. Часто эти движения имеют большую амплитуду и скорость и приводят к крупным катастрофам, например землетрясениям. Однако имеются еще и очень медленные, не ощутимые даже самыми чувствительными приборами вертикальные движения с переменным знаком. Это так называемые колебательные движения. Только за очень продолжительный промежуток времени обнаруживается, что горные вершины выросли на несколько сантиметров, а речные долины углубились.

В конце XIX - начале XX в. некоторые естествоиспытатели усомнились в справедливости этих предположений и стали осторожно высказывать идеи о единстве материков в геологическом прошлом, в настоящее время разделенных обширными океанами. Эти ученые, как и многие люди прогрессивных взглядов, оказались в затруднительном положении, поскольку их предположение было бездоказательно. Действительно, если вертикальные колебания земной коры можно было объяснил, какими-то внутренними силами (например, воздействием тепла Земли), то перемещение громадных континентов по земной поверхности сложно было представить.

ГИПОТЕЗА ВЕГЕНЕРА

В начале XX в. большую популярность среди естествоиспытателей, благодаря трудам немецкого геофизика А. Вегенера, получила идея перемещения материков. Он провел многие годы в экспедициях и в ноябре 1930 г. (точная дата неизвестна) погиб на ледниках Гренландии. Научный мир был потрясен известием о гибели А. Вегенера, находившегося в расцвете творческих сил. К этому времени достигла зенита популярность его идеи о дрейфе материков. Многие геологи и геофизики, палеогеографы и биогеографы с интересом восприняли их, стали появляться талантливые работы, в которых развивались эти идеи.

А. Вегенеру пришла мысль о возможном перемещении материков, когда он внимательно рассматривал географическую карту мира. Его поразило удивительное сходство очертаний берегов Южной Америки и Африки. Позднее, А. Вегенер познакомился с палеонтологическими материалами, свидетельствующими о существовании некогда сухопутных связей между Бразилией и Африкой. В свою очередь, это послужило толчком к проведению более детального анализа имеющихся геологических и палеонтологических данных и привело к твердому убеждению о правильности его предположения.

Преодолеть господство хорошо разработанной концепции о неизменности положения материков, или гипотезы фиксизма, остроумным, по чисто умозрительным предположением мобилистов, основанным пока только па сходстве конфигураций противоположных берегов Атлантического океана, в первое время было сложно. А. Вегенер считал, что он сможет убедить всех своих оппонентов в справедливости дрейфа материков лишь тогда, когда будут собраны веские доказательства, основанные на обширном геологическом и палеонтологическом материалах.

Для подтверждения дрейфа материков А. Вегенер и его сторонники приводили четыре группы независимых доказательств: геоморфологические, геологические, палеонтологические и палеоклиматические. Итак, все началось с определенного сходства береговых линий материков, расположенных по обе стороны от Атлантического океана, менее четкое совпадение имеют очертания береговых линий материки, окружающие Индийский океан. А. Вегенер предположил, что около 250 млн. лет назад все материки были сгруппированы в единый гигантский суперматерик - Пангею. Этот суперматерик состоял из двух частей. На севере располагалась Лавразия, которая объединяла Евразию (без Индии) и Северную Америку, а на юге - Гондвана, представленная Южной Америкой, Африкой, Индостаном, Австралией и Антарктидой.

Реконструкция Пангеи была основана главным образом на геоморфологических данных. Они полностью подтверждаются сходством геологических разрезов отдельных материков и ареалами развития определенных типов животного и растительного царств. Вся древняя флора и фауна южных гондванских материков образует единое сообщество. Многие наземные и пресноводные позвоночные, а также мелководные беспозвоночные формы, не способные активно перемещаться на большие расстояния и жившие как будто бы на разных материках, оказались удивительно близкими и похожими друг на друга. Трудно представить, каким образом могла расселиться древняя флора, если бы материки были отдалены один от другого на такое же огромное расстояние как в настоящее время.

Убедительные доказательства в пользу существования Пангеи, Гондваны и Лавразии получены А. Вегенером после обобщения палеоклиматических данных. В то время уже было хорошо известно, что почти на всех южных материках обнаружены следы крупнейшего покровного оледенения, которое произошло около 280 млн. лет назад. Ледниковые образования в виде фрагментов древних морен (их называют тиллитами), остатков форм ледникового рельефа и следов движения ледника известны в Южной Америке (Бразилия, Аргентина), Южной Африке, Индии, Австралии и Антарктиде. Трудно представить, как при современном положении материков могло возникнуть оледенение почти одновременно в столь удаленных друг от друга районах. Кроме того, большинство из перечисленных районов оледенения располагаются и настоящее время в экваториальных широтах.

Противники гипотезы дрейфа материков выставляли следующие аргументы. По их мнению, хотя все эти континенты в прошлом располагались в экваториальных и тропических широтах, они находились на значительно более высоком, чем в настоящее время, гипсометрическом положении, что обусловило появление в их пределах льда и снега. Ведь сейчас на горе Килиманджаро имеется многолетний снег и лед. Однако маловероятно, чтобы общая высота материков в то далекое время составляла 3500-4000 м. Для этого предположения нет никаких оснований, так как в этом случае материки подвергались бы интенсивному размыву и на их обрамлении должны были скопиться толщи грубообломочного материала, подобные накоплениям в конечных бассейнах стока горных рек. В действительности же на шельфе материков отлагались лишь тонкозернистые и хемогенные осадки.

Поэтому наиболее приемлемое объяснение этому уникальному явлению, т. е. нахождению в современной экваториальной и тропической областях Земли древних морен, состоит в том, что 260 - 280 млн. лет назад материк Гондвана, состоящий из собранных воедино Южной Америки, Индии, Африки, Австралии и Антарктиды, находился в высоких широтах, вблизи Южного географического полюса.

Противники гипотезы дрейфа не могли представить, каким образом материки перемещались на столь большие расстояния. А. Вегенер объяснял это на примере движения айсбергов, которое осуществлялось под влиянием центробежных сил, обусловленных вращением планеты.

Благодаря простоте и наглядности и, главное, убедительности приводимых в защиту гипотезы дрейфа материков фактов, она довольно быстро стала популярной. Однако вслед за успехом довольно скоро наступил кризис. Начало критическому отношению к гипотезе положили геофизики. Они получили большое число фактов и физических противоречий в цепи логических доказательств перемещения материков. Это им позволило доказывать неубедительность способа и причин дрейфа материков, и к началу 40-х годов эта гипотеза растеряла почти всех своих сторонников. К 50-м годам XX в. большинству геологов казалось, что гипотеза дрейфа материков должна быть окончательно оставлена и может рассматриваться лишь как один из исторических парадоксов науки, не получивших подтверждения и не выдержавший проверку временем.

ПАЛЕОМАГНЕТИЗМ И НЕОМОБИЛИЗМ

С середины XX в. ученые приступили к интенсивному исследованию рельефа и геологии океанического дна его глубинных недр, а также физики, химии и биологии океанических вод. Морское дно стали прощупывать многочисленными приборами. Расшифровывая записи сейсмографов и магнитометров, геофизики получали новые факты. Было установлено, что многие горные породы в процессе своего образования приобретали намагниченность по направлению существующего геомагнитного полюса. В большинстве случаев эта остаточная намагниченность остается без изменения многие миллионы лет.

В настоящее время уже хорошо разработаны методики отбора образцов и определения их намагниченности на специальных приборах - магнитометрах. Определяя направление намагниченности горных пород различного возраста, можно узнать, как менялось в каждом, конкретно взятом районе направление геомагнитного поля за тот или иной промежуток времени.

Изучение остаточной намагниченности горных пород привело к двум фундаментальным открытиям. Во-первых, установлено, что в течение длительной истории Земли намагниченность менялась многократно - от нормальной, т. е. соответствующей современной, до обратной. Это открытие было подтверждено в начале 60-х годов нашего столетия. Оказалось, что ориентация намагниченности четко зависит от времени и на основании этого были построены шкалы обращений магнитного поля.

Во-вторых, при изучении колонок лав, залегающих по обе стороны от срединно-океанических хребтов, обнаружена определенная симметрия. Это явление получило название полосовой магнитной аномалии. Такие аномалии симметрично располагаются по обе стороны от срединно-океанического хребта, и каждая их симметричная пара имеет один и тот же возраст. Причем последний закономерно увеличивается по мере удаления от оси срединно-океанического хребта в сторону материков. Полосовые магнитные аномалии представляют собой как бы запись инверсий, т. е. изменений направления магнитного поля на гигантской «магнитной ленте».

Американский ученый Г. Хесс высказал предположение, многократно подтвержденное впоследствии, что частично расплавленное мантийное вещество поднимается на поверхность по трещинам и через рифтовые долины, расположенные в осевой части срединно-океанического хребта. Оно растекается в разные стороны от оси хребта и при этом как бы растаскивает, раскрывает океаническое дно. Мантийное вещество постепенно заполняет рифтовую трещину, застывает в ней, намагничивается исходя из существующей магнитной полярности, а затем, разрываясь примерно посередине, отодвигается новой порцией расплава. На основании времени инверсии и порядка чередования прямой и обратной намагниченности определяется возраст океанов и расшифровывается история их развития.

Полосовые магнитные аномалии океанического дна оказались наиболее удобной информацией для восстановления эпох полярности геомагнитного поля в геологическом прошлом. Но имеется еще очень важное направление изучения магматических пород. Основываясь на остаточной намагниченности древних пород, удается определить направление палеомеридианов, а следовательно, и координаты Северного и Южного полюсов в ту или иную геологическую эпоху.

Первые определения положения древних полюсов показали, что чем древнее исследуемая эпоха, тем сильнее отличается местонахождение магнитного полюса от современного. Однако главное заключается в том, что координаты полюсов, определенные по одновозрастным горным породам, для каждого в отдельности континента одинаковые, а для разных континентов имеют расхождение, которое увеличивается по мере углубления в далекое прошлое.

Одним из феноменов палеомагнитных исследований была несовместимость положения магнитных древних и современных полюсов. При попытке совместить их каждый раз требовалось передвигать континенты. Примечательно, что при совмещении позднепалеозойских и раннемезозойских магнитных полюсов с современными континенты сдвигались в единый огромный материк, очень похожий на Пангею.

Столь ошеломляющие результаты палеомагнитных исследований способствовали возвращению к гипотезе о дрейфе материков со стороны широких научных кругов. Английский геофизик Е. Буллард и его коллеги решили проверить исходную предпосылку дрейфа материков - сходство контуров материковых глыб, разобщенных в настоящее время Атлантическим океаном. Совмещение проводилось с помощью электронно-вычислительных машин, но уже не по контуру береговых линий, как это делал А. Вегенер, а по изобате 1800 м, которая проходит примерно посередине континентального склона. Контуры материков, расположенные по обоим краям Атлантики, на значительном протяжении совпали.

ТЕКТОНИКА ЛИТОСФЕРНЫХ ПЛИТ

Открытия первичной намагниченности, полюсов магнитных аномалий с переменным знаком, симметричных осям срединно-океанических хребтов, изменение положения магнитных полюсов со временем и целый ряд других открытий привели к возрождению гипотезы дрейфа материков.

Представление о расширении дна океанов от осей срединно-океанических хребтов к периферии получило многократное подтверждение, особенно после глубоководного бурения. Большой вклад в развитие идей мобилизма (дрейфа материков) внесли сейсмологи. Их исследования позволили уточнить картину распределения зон сейсмической активности на земной поверхности. Оказалось, что эти зоны довольно узкие, но протяженные. Они приурочены к окраинам материков, островным дугам, а также к срединно-океаническим хребтам.

Возрожденная гипотеза дрейфа материков получила название тектоники литосферных плит. Эти плиты медленно перемещаются по поверхности нашей планеты. Их толщина иногда достигает 100-120 км, но чаще составляет 80-90 км. Литосферных плит на Земле немного (рис. 1) - восемь крупных и около полутора десятков мелких. Последние часто называют микроплитами. Две крупные плиты расположены в пределах Тихого океана и представлены тонкой и легко проницаемой океанической корой. Антарктическая, Индо-Австралийская, Африканская, Северо-Американская, Южно-Американская и Евразийская литосферные плиты обладают корой континентального типа. Они имеют различные края (границы). В тех случаях, когда плиты расходятся, их края называют дивергентными. Поскольку они расходятся, в образующуюся трещину (рифтовую зону) поступает мантийное вещество. Оно застывает на поверхности дна и наращивает океаническую кору. Новые порции мантийного вещества расширяют рифтовую зону, что заставляет двигаться литосферные плиты. На месте их раздвига образуется океан, размеры которого все время увеличиваются. Этот тип границ фиксируется современными океаническими рифтовыми трещинами вдоль осей срединно-океанических хребтов.

Рис. 1. Современные литосферные плиты Земли и направление их движения.

1 - оси раздвижения и разломы; 2 - планетарные пояса сжатия; 3 - конвергентные границы плит; 4 - современные континенты

Когда литосферные плиты сходятся, их границы носят название конвергентных. В зоне сближения происходят сложные процессы. Можно выделить два главных. В случае, когда океаническая плита сталкивается с другой океанической или континентальной, она погружается в мантию. Процесс этот сопровождается короблением и разламыванием. В зоне погружения возникают глубокофокусные землетрясения. Именно в этих местах располагаются зоны Заварицкого - Беньоффа.

Океаническая плита поступает в мантию и там частично переплавляется. При этом наиболее легкие ее компоненты, расплавляясь, вновь поднимаются на поверхность в виде вулканических извержений. Именно такую природу имеет Тихоокеанское огненное кольцо. Тяжелые компоненты медленно погружаются в мантию и могут опускаться вплоть до границ ядра.

В случае, когда сталкиваются две континентальные литосферные плиты, возникает эффект типа торошения.

Его мы многократно наблюдаем во время ледохода, при этом льдины сталкиваются и раздрабливаются, надвигаясь друг на друга. Земная кора континентов значительно легче, чем мантия, поэтому плиты не погружаются в мантию. При столкновении они сжимаются и на их краях возникают крупные горные сооружения.

Многочисленные и многолетние наблюдения позволили геофизикам установить средние скорости перемещения литосферных плит. В пределах Альпийско-Гималайского пояса сжатия, который образовался в результате столкновения Африканской и Индостанской плит с Евразийскои, скорости сближения составляют от 0,5 см/год в районе Гибралтара до 6 см/год в районах Памира и Гималаев.

В настоящее время Европа «отплывает» от Северной Америки со скоростью до 5 см/год. Однако Австралия «уходит» от Антарктиды с максимальной скоростью - в среднем 14 см/год.

Наиболее высокими скоростями перемещения обладают океанические литосферные плиты - их скорость в 3-7 раз выше скорости континентальных литосферных плит. Самой «быстрой» является Тихоокеанская плита, а самой «медленной» - Евразийская.

МЕХАНИЗМ ПЕРЕМЕЩЕНИЯ ЛИТОСФЕРНЫХ ПЛИТ

Сложно вообразить, что обширные и массивные материки могут медленно перемещаться. Еще труднее ответить на вопрос, почему они перемещаются? Земная кора представляет охлажденную и полностью раскристаллизованную массу. Снизу она подстилается частично расплавленной астеносферой. Легко предположить, что литосферные плиты возникли при остывании частично расплавленного вещества астеносферы аналогично процессу образования льда в водоемах в зимний период. Однако разница заключается в том, что лед легче воды, а раскристаллизованные силикаты литосферы тяжелее своего расплава.

Каким же образом формируются океанические литосферные плиты?

В пространство между ними поднимается горячее и частично расплавленное вещество астеносферы, которое, попадая на поверхность океанического дна, охлаждается и, кристаллизуясь, превращается в породы литосферы (рис. 2). Образовавшиеся ранее участки литосферы как бы «промерзают» еще сильнее и раскалываются трещинами. Новая порция горячего вещества поступает в эти трещины и, застывая, увеличиваясь в объеме, раздвигает их. Процесс многократно повторяется.

Рис. 2. Схема движения жестких литосферных плит (по Б. Айзексу и др.)

Породы литосферы тяжелее подстилающего горячего вещества астеносферы и, следовательно, чем она толще, тем глубже опускается, или проседает, в мантию. Почему же литосферные плиты, если они тяжелее вещества расплавленной мантии, не тонут в ней? Ответ довольно прост. Они не тонут потому, что к тяжелой мантийной части континентальных плит сверху «припаяна» легкая земная кора, выполняющая роль поплавка. Поэтому средняя плотность пород континентальных плит всегда меньше средней плотности горячего вещества мантии.

Океанические же плиты тяжелее мантии, и поэтому они рано или поздно погружаются в мантию и тонут под более легкими континентальными плитами.

Довольно длительное время океаническая литосфера, подобно гигантским «расплющенным блюдцам», удерживается на поверхности. В соответствии с законом Архимеда масса вытесненной из-под них астеносферы равна массе самих плит и заполняющих литосферные понижения воды. Возникает существующая длительное время плавучесть. Однако долго так продолжаться не может. Целостность «блюдца» временами нарушается в местах возникновения избыточных напряжений, причем они тем сильнее,чем глубже погружаются плиты в мантию, а следовательно, чем они древнее. Вероятно, в литосферных плитах, имевших возраст древнее 150 млн. лет, возникали напряжения, намного превышающие предел прочности самой литосферы, они раскалывались и погружались в горячую мантию.

ГЛОБАЛЬНЫЕ РЕКОНСТРУКЦИИ

На основании изучения остаточной намагниченности горных пород континентов и океанического дна устанавливаются положение полюсов и широтная зональность в геологическом прошлом. Палеошироты, как правило, не совпадают с современными географическими широтами, и эта разница все сильнее увеличивается по мере удаления от настоящего времени.

Совокупное использование геофизических (палеомагнитных и сейсмических), геологических, палеогеографических и палеоклиматических данных позволяет осуществить реконструкции положения материков и океанов для различных отрезков времени геологического прошлого. В этих исследованиях принимают участие многие специалисты: геологи, палеонтологи, палеоклиматологи, геофизики, а также специалисты по вычислительной технике, поскольку не сами расчеты векторов остаточной намагниченности, а интерпретация их немыслима без применения ЭВМ. Реконструкции осуществлялись независимо друг от друга советскими, канадскими и американскими учеными.

На протяжении почти всего палеозоя южные материки были объединены в единый огромный континент Гондвану. Нет никаких достоверных свидетельств существования в палеозое Южной Атлантики и Индийского океана.

В начале кембрийского периода, примерно 550 – 540 млн. лет назад, наиболее крупным материком являлась Гондвана. Ей противостояли в северном полушарии разобщенные материки (Северо-Американский, Восточно-Европейский и Сибирский), а также небольшое число микроконтинентов. Между Сибирским и Восточно-Европейским континентами, с одной стороны, и Гондваной, с другой, располагался Палеоазиатский океан, а между Северо-Американским материком и Гондваной находился палео-Атлантический океан. Кроме них, в то далекое время существовало обширное океаническое пространство - аналог современного Тихого океана. Конец ордовика, около 450 - 480 млн. лет назад, характеризовался сближением континентов в северном полушарии. Их столкновения с островными дугами приводили к наращиванию окраинных частей Сибирской и Северо-Американской суши. Палеоазиатский и палео-Атлантический океаны начинают сокращаться в размерах. Через некоторое время на этом месте возникает новый океан - Палеотетис. Он занимал территорию современной Южной Монголии, Тянь-Шаня, Кавказа, Турции, Балкан. Новый водный бассейн возник и на месте современного Уральского хребта. Ширина Уральского океана превышала 1500 км. Согласно палеомагнитным определениям, Южный полюс в это время находился в северо-западной части Африки.

В первой половине девонского периода, 370 - 390 млн. лет назад, материки начинали объединяться: Северо-Американский с Западной Европой, в результате чего возник, правда не надолго, новый материк - Еврамерика. Современные горные сооружения Аппалачей и Скандинавии образовались за счет столкновения этих континентов. Палеотетис несколько сократился в размерах. На месте Уральского и Палеоазиатского океанов сохранялись небольшие реликтовые бассейны. Южный полюс находился в районе нынешней Аргентины.

Значительная часть Северной Америки располагалась в южном полушарии. В тропических и экваториальных широтах находились Сибирский, Китайский, Австралийский континенты и восточная часть Еврамерики.

Ранний карбон, примерно 320-340 млн. лет назад, характеризовался продолжающимся сближением континентов (рис. 3). В местах их столкновения возникли складчатые области и горные сооружения - Урал, Тянь-Шань, горные массивы Южной Монголии и Западного Китая, Салаир и др. Возникает новый океан Палеотетис II (Палеотетис второй генерации). Он отделял Китайский континент от Сибирского и Казахстанского.

Рис.3. Положение материков в раннем карбоне (340 млн. лет назад)

В середине каменноугольного периода значительная часть Гондваны оказалась в полярном районе южного полушария, что привело к одному из величайших в истории Земли оледенений.

Поздний карбон - начало пермского периода 290 - 270 млн. лет назад, ознаменовался объединением материков в гигантскую континентальную глыбу - суперматерик Пангею (рис. 4). Он состоял из Гондваны на юге и Лавразии на севере. Лишь Китайский континент отделялся океаном Палеотетис II от Пангеи.

Во второй половине триасового периода, 200 - 220 млн. лет назад, хотя расположение континентов было примерно таким же, как и в конце палеозоя, тем не менее произошли изменения в очертаниях континентов и океанов (рис. 5). Китайский континент соединился с Евразией, прекратил существование Палеотетис II.

Однако почти одновременно возник и начал усиленно расширяться новый океанический бассейн - Тетис. Он отделил Гондвану от Евразии. Внутри его сохранились изолированные микроконтиненты - Индокитайский Иранский, Родопский, Закавказский и др.

Возникновение нового океана было обусловлено дальнейшим развитием литосферы - распадом Пангеи и разделением всех известных в настоящее время материков. В начале раскололась Лавразия - в районе со временного Атлантического и Северного Ледовитого океанов. Затем отдельные ее части стали отодвигаться друг от друга и тем самым освободили место для Северной Атлантики.

Позднеюрская эпоха, около 140 - 160 млн. лет назад, - это время дробления Гондваны (рис. 6). На месте раскола возникли Атлантический океанический бассейн и срединно-океанические хребты. Продолжал развиваться океан Тетис, на севере которого располагалась система островных дуг. Они находились на месте современного Малого Кавказа, Эльбурса и гор Афганистана и отделяли от океана окраинные моря.

В течение позднеюрского и мелового времени осуществлялось перемещение континентов в широтном направлении. Возникли Лабрадорское море и Бискайский залив, Индостан и Мадагаскар отделились от Африки. Между Африкой и Мадагаскаром появился пролив. Длительное путешествие Индостанской плиты завершилось в конце палеогена столкновением с Азией. Здесь и образовались гигантские горные сооружения - Гималаи.

Океан Тетис начинал последовательно сокращаться и замыкаться, главным образом за счет сближения Африки и Евразии. На его северной окраине возникала цепь вулканических островных дуг. Аналогичный вулкапический пояс сформировался и на восточной окраине Азии. В конце мелового периода Северная Америка и Евразия соединились в районе Чукотки и Аляски.

В течение кайнозоя полностью замкнулся океан Тетис, реликтом которого сейчас является Средиземное море. Столкновение Африки с Европой привело к образованию Альпийско-Кавказской горной системы. Континенты начали постепенно сходиться в северном полушарии и расходиться в стороны в южном, распадаясь на отдельные изолированные блоки и массивы.

Сравнивая положения континентов в отдельные геологические периоды, мы приходим к мысли, что в развитии Земли существовали крупные циклы, на протяжении которых материки то сходились воедино, то расходились в разные стороны. Продолжительность каждого такого цикла составляет не менее 600 млн. лет. Есть основания считать, что образование Пангеи и ее распад не были единичными моментами в истории нашей планеты. Подобный супергигантский материк возник и в глубокой древности примерно 1 млрд. лет назад.

ГЕОСИНКЛИНАЛИ - СКЛАДЧАТЫЕ ГОРНЫЕ СИСТЕМЫ

В горах мы восхищаемся открывающейся красочной панорамой, поражаемся безграничными созидательными и разрушительными силами природы. Величественно стоят седые горные вершины, огромные ледники языками спускаются в долины, в глубоких каньонах бурлят горные реки. Нас удивляют не только дикая красота горных областей, но и те факты, о которых мы слышим от геологов, а они утверждают, что на месте обширных горных сооружений в далеком прошлом находились необозримые морские просторы.

Когда Леонардо да Винчи обнаружил высоко в горах остатки раковин морских моллюсков, он сделал правильный вывод о существовании там в древности моря, но ему тогда мало кто поверил. Каким же образом в горах на высоте 2-3 тыс. м могло оказаться море? Не одно поколение ученых-естествоиспытателей приложило большие усилия для того, чтобы доказать вероятность такого, казалось бы, небывалого случая.

Великий итальянец был прав. Поверхность нашей планеты все время находится в движении - горизонтальном или вертикальном. При ее опускании неоднократно случались грандиозные трансгрессии, когда свыше 40% современной поверхности суши покрывалось морем. При восходящем движении земной коры высота материков увеличивалась и море отступало. Происходила так называемая регрессия моря. Но каким же образом образовались грандиозные горные сооружения и обширные горные массивы?

Длительное время в геологии господствовали идеи преобладании вертикальных движений. В связи с этим существовало мнение, что благодаря таким движениям и образовались горы. Большинство горных сооружений земного шара сосредоточено в определенных поясах протяженностью в тысячи километров и шриной в несколько десятков или даже первых сотен километров. Для них характерны интенсивная складчатость, проявления разнообразных разрывов, интрузий магматических пород, даек, секущих толщи осадочных и метаморфических пород. Непрерывное медленное воздымание, сопровождающееся эрозионными процессами, формируют рельеф горных сооружений.

Горные области Аппалачей, Кордильер, Урала, Алтая, Тянь-Шаня, Гиндукуша, Памира, Гималаев, Альп, Кавказа - это складчатые системы, которые образовать в различные периоды геологического прошлого в эпохи тектонической и магматической активности. Для этих горных систем типична огромная мощность накопившихся осадочных образований, часто превышающая 10 км, что в десятки раз больше мощности аналогичных пород в пределах равнинной, платформенной части.

Открытие необычайно мощных толщ осадочных пород, смятых в складки, пронизанных интрузиями и дайками магматических пород, к тому же имеющих большую протяженность при сравнительно небольшой ширине, привело к созданию в середине XIX в. геосинклинальной теории формирования гор. Протяженная область мощных осадочных толщ, со временем превращающаяся горную систему, получила название геосинклинали. В противоположность ей устойчивые участки земной коры большой мощностью осадочных пород называют платформами.

Почти все горные системы земного шара, обладающие складчатостью, разрывами и магматизмом, -это древние геосинклинали, расположенные на краях континентов. Несмотря на огромную мощность, абсолютное большинство осадков имеют мелководное происхождение. Нередко на поверхностях напластований встречаются отпечатки знаков ряби, остатки мелководных донных животных и даже трещины усыхания. Большая мощность отложений свидетельствует о значительном и при этом достаточно быстром погружении земной коры. Наряду с типично мелководными осадками встречаются и глубоководные (например, радиоляриты и тонкозернистые осадки со своебразной слоистостью и текстурами).

Геосинклинальные системы изучаются в течение целого столетия и благодаря трудам многих поколений ученых разработана, казалось бы, стройная система последовательности их возникновения и эволюции. Единственным необъяснимым фактом до сих пор остается отсутствие современного аналога геосинклинали. Что можно считать современной геосинклиналью? Окраинное море или весь океан?

Однако с развитием концепции тектоники литосферных плит геосинклинальная теория претерпела некоторые изменения и было найдено место геосинклинальных систем в периоды растяжения, перемещения и столкновения литоеферных плит.

Каким же образом происходило развитие складчатых систем? На тектонически активных окраинах континентов располагались протяженные области, испытывающие медленное погружение. В окраинных морях накапливались отложения мощностью от 6 до 20 км. Одновременно с ними здесь формировались вулканические образования в виде магматических интрузий, даек и лавовых покровов. Осадконакопление длилось десятки, а иногда даже и сотни миллионов лет.

Затем в орогенный этап происходили медленная деформация и преобразование геосинклинальной системы. Ее площадь сократилась, она как бы сплющилась. Возникли складки и разрывы, а также интрузии расплавленных магматических пород. В процессе деформации произошло смещение глубоководных и мелководных осадков и при высоких давлениях и температурах они подвергались метаморфизму.

В это время происходило воздымание, море полностью покидает территорию и образовались горные хребты массивы. Последующие процессы размыва горных пород, транспортировки и накопления обломочных осадков привели в конце концов к тому, что эти горы постепенно разрушались вплоть до отметок,близких к уровню моря. К такому же результату приводило и медленное погружение складчатых систем, находящихся на краях континентальной плиты.

В процессе формирования геосинклинальных систем принимают участие не только горизонтальные перемещения, но и вертикальные, осуществляемые главным образом в результате медленного движения литосферных плит. В случае, когда одна плита погружалась под другую, мощные осадки геосинклиналей в пределах окраинных морей, островных дуг и глубоководных желобов подвергались активному воздействию высоких температур и давления. Области погружения плиты носят название зон субдукции. Здесь породы опускаются в мантию, расплавляются и перерабатываются. Для этой зоны характерны сильнейшие землетрясения и вулканизм.

Там, где давление и температура были не столь высоки, происходило смятие горных пород в систему складок, а в местах наибольшей твердости пород их сплошность нарушалась разрывами и перемещениями отдельных блоков.

В областях сближения, а затем сталкивания континентальных литосферных плит ширина геосинклинальнои системы сильно уменьшалась. Одни части ее опускались глубоко в мантию, а другие, наоборот, надвигались на ближайшую плиту. Выжатые из глубины и смятые в складки осадочные и метаморфические образования многократно наслаиваясь друг на друга в виде гигантских чешуи, и в конце концов возникли горные массивы. Например, Гималаи образовались в результате столкновения двух больших литосферных плит - Индостанской и Евроазиатской. Горные системы южной Европы и Северной Африки, Крым, Кавказ, горные области Турции, Иран, Афганистан в основном сформировались в результате столкновения Африканской и Евроазиатской плит. Аналогичным образом, но в более древнее время возникли Уральские горы, Кордильеры, Аппалачи и другие горные области.

ИСТОРИЯ СРЕДИЗЕМНОГО МОРЯ

Моря и океаны формировались длительное время, пока не приобрели современный вид. Из истории развития морских бассейнов особый интерес представляет эволюция Средиземного моря. Вокруг него возникли первые цивилизованные государства, а история народов, населявших его побережье, хорошо известна. Но нам придется начать свое описание за много миллионов лет до появления здесь первого человека.

В глубокой древности, почти 200 млн. лет назад, на месте современного Средиземного моря существовал широкий и глубокий океан Тетис, Африка от Европы в то время отстояла на несколько тысяч километров. В океане находились крупные и мелкие архипелаги островов. Эти всем хорошо известные области, в настоящее время расположенные в Южной Европе, на Ближнем и Среднем Востоке - Иран, Турция, Синайский полуостров, Родопский, Апулийский, Татрский массивы, Южная Испания, Калабрия, Мезета, Канарские острова, Корсика, Сардиния, находились далеко к югу от современного их местоположения.

В мезозое между Африкой и Северной Америкой возник разлом. Он отделил от Африки Родопо-Турецкий массив и Иран, и по нему внедрялась базальтовая магма, формировалась океаническая литосфера и происходило раздвижение земной коры, или спрединг. Океан Тетис располагался в тропической области Земли и простирался от современного Атлантического океана через Индийский (последний составлял его часть) до Тихого. Максимальной широты Тетис достиг примерно 100- 120 млн. лет назад, а затем началось его последовательное сокращение. Медленно Африканская литосферная плита сближалась с Евроазиатской. Около 50 - 60 млн. лет назад от Африки отделилась Индия и начала свой беспримерный дрейф к северу, пока не столкнулась с Евразией. Размеры океана Тетис постепенно сокращались. Всего 20 млн. лет назад на месте обширного океана остались окраинные моря - Средиземное, Черное и Каспийское, размеры которых, однако, намного превышали современные. Не менее масштабные события происходили в последующее время.

В начале 70-х годов нашего столетия в Средиземном море под слоем рыхлых осадков мощностью в несколько сот метров были обнаружены эвапориты - разнообразные каменные соли, гипсы и ангидриты. Они образовались путем усиленного испарения воды около 6 млн. лет назад. Но неужели Средиземное море могло высохнуть? Именно такая гипотеза была высказана и поддерживается многими геологами. Предполагается, что 6 млн. лет назад Гибралтарский пролив закрылся и примерно через тысячу лет Средиземное море превратилось в огромную котловину глубиной 2 - 3 км с мелкими пересыхающими солеными озерами. Дно моря покрывалось слоем затвердевшего доломитового ила, гипса и каменной соли.

Геологи установили, что Гибралтарский пролив периодически открывался и вода через него из Атлантического океана попадала на дно Средиземного моря. При открытии Гибралтара атлантические воды низвергались в виде водопада, который по крайней мере в 15 - 20 раз превышал расход крупнейшего водопада Виктория на р. Замбези в Африке (200 км 3 /год). Закрытие и открытие Гибралтара происходило не менее 11 раз, и это обеспечило накопление толщи эвапоритов мощностью около 2 км.

В периоды осушения Средиземного моря на крутых склонах его глубокой котловины стекавшие с суши реки прорезывали протяженные и глубокие каньоны. Один из таких каньонов обнаружен и прослежен на расстоянии около 250 км от современной дельты р. Рона по материковому склону. Он заполнен очень молодыми, плиоценовыми осадками. Другим примером такого каньона является подводное продолжение р. Нила в виде заполненного осадками каньона, прослеженного на расстоянии 1200 км от дельты.

Во время потери связи Средиземного моря с открытым океаном на его месте располагался своеобразный сильно опресненный бассейн, остатками которого в настоящее время являются Черное и Каспийское моря, этот пресноводный, а временами и засолоненный бассейн простирался от Центральной Европы до Урала и Аральского моря и назван Паратетисом.

Зная положение полюсов и скорости современного перемещения литосферных плит, скорости раздвижения и поглощения океанического дна, можно наметить путь движения континентов в будущем и представить их положение на какой-то отрезок времени.

Такой прогноз был сделан американскими геологами Р. Дитцем и Дж. Холденом. Через 50 млн. лет, по их предположениям, Атлантический и Индийский океаны разрастутся за счет Тихого, Африка сместится на север и благодаря этому постепенно ликвидируется Средиземное море. Гибралтарский пролив исчезнет, а «повернувшаяся» Испания закроет Бискайский залив. Африка будет расколота великими африканскими разломами и восточная ее часть сместится на северо-восток. Красное море настолько расширится, что отделит Синайский полуостров от Африки, Аравия переместится на северо-восток и закроет Персидский залив. Индия все сильнее будет надвигаться на Азию, а значит, Гималайские горы будут расти. Калифорния по разлому Сан-Андреас отделится от Северной Америки, и на этом месте начнет формироваться новый океанический бассейн. Значительные изменения произойдут в южном полушарии. Австралия пересечет экватор и придет в соприкосновение с Евразией. Этот прогноз требует значительного уточнения. Многое здесь еще остается дискуссионным и неясным.

Из книги «Современная геология». Н.А. Ясаманов. М. Недра. 1987 г.