Простое объяснение теоремы байеса. Формула полной вероятности и формулы байеса

Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.

Если события H 1 , H 2 , …, H n попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий, то для любого события А справедливо равенство:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) – формула полной вероятности. При этом H 1 , H 2 , …, H n называют гипотезами.

Доказательство: Событие А распадается на варианты: AH 1 , AH 2 , …, AH n . (А наступает вместе с H 1 и т.д.) Иначе говоря, имеем А= AH 1 + AH 2 +…+ AH n . Так как H 1 , H 2 , …, H n попарно несовместны, то несовместны и события AH 1 , AH 2 , …, AH n . Применяя правило сложения, находим: P(А)= P(AH 1)+ P(AH 2)+…+ P(AH n). Заменив каждое слагаемое P(AH i) правой части произведением P Hi (A)P(H i), получаем требуемое равенство.

Пример:

Допустим, у нас есть два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго – 0,9. Найдем вероятность того, что взятая наудачу деталь – стандартная.

Р(А) = 0,5*0,8 + 0,5*0,9 = 0,85.

Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.

Формула Байеса:

Она позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Доказательство: Пусть событие А может наступить при условии появления одного из несовместных событий H 1 , H 2 , …, H n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами.

Вероятность появления события А определяется по формуле полной вероятности:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) (1)

Допустим, что произведено испытание, в результате которого появилось событие А. Определим, как изменились, в связи с тем, что событие А уже наступило, вероятности гипотез. Другими словами, будем искать условные вероятности

P A (H 1), P A (H 2), …, P A (H n).

По теореме умножения имеем:

Р(АH i) = Р(А) Р A (H i) = Р(H i)Р Hi (А)

Заменим здесь Р(А) по формуле (1), получаем

Пример:

Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=4 белых и n-m=8 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность Р того, что шар вынут из второго ящика.

Решение.

4) Выведите формулу для вероятности k успехов в серии n испытаний по схеме Бернулли.

Исследуем случай, когда производится n одинаковых и независимых опытов, каждый из которых имеет только 2 исхода {A; }. Т.е. некоторый опыт повторяется n раз, причем в каждом опыте некоторое событие А может появиться с вероятностью P(A)=q или не появиться с вероятностью P()=q-1=p .

Пространство элементарных событий каждой серии испытаний содержит точек или последовательностей из символов А и . Такое вероятностное пространство и носит название схема Бернулли. Задача же заключается в том, чтобы для данного k найти вероятность того, что при n- кратном повторении опыта событие А наступит k раз.

Для большей наглядности условимся каждое наступление события А рассматривать как успех, ненаступление А – как неуспех. Наша цель – найти вероятность того, что из n опытов ровно k окажутся успешными; обозначим это событие временно через B.

Событие В представляется в виде суммы ряда событий – вариантов события В. Чтобы фиксировать определенный вариант, нужно указать номера тех опытов, которые оканчиваются успехом. Например, один из возможных вариантов есть

. Число всех вариантов равно, очевидно, , а вероятность каждого варианта ввиду независимости опытов равна . Отсюда вероятность события В равна . Чтобы подчеркнуть зависимость полученного выражения от n и k, обозначим его . Итак, .

5) Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события А от вероятности p наступления A в одном опыте.

В условиях схемы Бернулли с заданными значениями n и p для данного e>0 оценим вероятность события , где k – число успехов в n опытах. Это неравенство эквивалентно |k-np|£en, т.е. -en £ k-np £ en или np-en £ k £ np+en. Таким образом, речь идёт о получении оценки для вероятности события k 1 £ k £ k 2 , где k 1 = np-en, k 2 = np+en. Применяя интегральную приближённую формулу Лапласа, получим: P( » . С учётом нечётности функции Лапласа получаем приближённое равенство P( » 2Ф .

Примечание : т.к. по условию n=1, то подставляем вместо n единицу и получаем окончательный ответ.

6) Пусть X – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание m . Докажите, что P (X ≥ 4) ≤ m/ 4 .

m= (т.к. 1-ое слагаемое положительно, то если его убрать, будет меньше) ³ (заменим a на 4, будет только меньше) ³ = =4×P (X ³4). Отсюда P (X ≥ 4) ≤ m/ 4 .

(Вместо 4 может быть любое число).

7) Докажите, что если X и Y – независимые дискретные случайные величины, принимающие конечное множество значений, то M(XY)=M(X)M(Y)

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Если случайные величины X и Y независимы, то математическое ожидание их произведения равно произведению их математических ожиданий (теорема умножения математических ожиданий).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). XY M(XY)= Ввиду независимости величин X и Y имеем: P(X= x i , Y=y j)= P(X=x i) P(Y=y j). Обозначив P(X=x i)=r i , P(Y=y j)=s j , перепишем данное равенство в виде p ij =r i s j

Таким образом, M(XY) = = . Преобразуя полученное равенство, выводим: M(XY)=()() = M(X)M(Y), что и требовалось доказать.

8) Докажите, что если X и Y – дискретные случайные величины, принимающие конечное множество значений, то M (X +Y ) = M (X ) +M (Y ).

Математическим ожиданием дискретной случайной величины с законом распределения

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых: M(X+Y)= M(X)+M(Y).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). Закон распределения величины X+Y будет выражаться соответствующей таблицей. M(X+Y)= .Эту формулу можно переписать следующим образом: M(X+Y)= .Первую сумму правой части можно представить в виде . Выражение есть вероятность того, что наступит какое-либо из событий (X=x i , Y=y 1), (X=x i , Y=y 2), … Следовательно, это выражение равно P(X=x i). Отсюда . Аналогично, . В итоге имеем: M(X+Y)= M(X)+M(Y), что и требовалось доказать.

9) Пусть Х – дискретная случайная величина, распределенная по биномиальному закону распределения с параметрами n и р . Докажите, что М(Х)=nр , D(Х)=nр(1-р) .

Пусть производится n независимых испытаний, в каждом из которых может появиться событие А с вероятностью р , так что вероятность противоположного события Ā равна q=1-p . Рассмотрим сл. величину Х – число появления события А в n опытах. Представим Х в виде суммы индикаторов события А для каждого испытания: Х=Х 1 +Х 2 +…+Х n . Теперь докажем, что М(Х i)=р, D(Х i)=np . Для этого рассмотрим закон распределения сл. величины, который имеет вид:

Х
Р р q

Очевидно, что М(Х)=р , случайная величина Х 2 имеет тот же закон распределения, поэтому D(Х)=М(Х 2)-М 2 (Х)=р-р 2 =р(1-р)=рq . Таким образом, М(Х i)=р , D(Х i)=pq . По теореме сложения математических ожиданий М(Х)=М(Х 1)+..+М(Х n)=nр. Поскольку случайные величины Х i независимы, то дисперсии тоже складываются: D(Х)=D(Х 1)+…+D(Х n)=npq=np(1-р).

10) Пусть X – дискретная случайная величина, распределенная по закону Пуассона с параметром λ. Докажите, что M (X ) = λ .

Закон Пуассона задается таблицей:

Отсюда имеем:

Таким образом, параметр λ, характеризующий данное пуассоновское распределение, есть не что иное как математическое ожидание величины X.

11) Пусть Х – дискретная случайная величина, распределенная по геометрическому закону с параметром р. Докажите, что M (X) = .

Геометрический закон распределения связан с последовательностью испытаний Бернулли до 1-го успешного события А. Вероятность появления события А в одном испытании равна р, противоположного события q = 1-p. Закон распределения случайной величины Х – числа испытаний имеет вид:

х n
Р р pq pq n-1

Ряд, записанный в скобках, получается почленным дифференцированием геометрической прогрессии

Следовательно, .

12) Докажите, что коэффициент корреляции случайных величин Х и У удовлетворяет условию .

Определение: Коэффициентом корреляции двух слу­чайных величин называется отношение их ковариации к произведе­нию средних квадратических отклонений этих величин: . .

Доказательство: Рассмотрим случайную величину Z = . Вычислим ее дисперсию . Поскольку левая часть неотрицательна, то правая неотрицательна. Следовательно, , |ρ|≤1.

13) Как вычисляется дисперсия в случае непрерывного распределения с плотностью f (x )? Докажите, что для случайной величины X с плотностью дисперсия D (X ) не существует, а математическое ожидание M (X ) существует.

Дисперсия абсолютно непрерывной случайной величины X с функцией плотности f(x) и математическим ожиданием m = M(X) определяется таким же равенством, как и для дискретной величины

В случае когда абсолютно непрерывная случайная величина X сосредоточена на промежутке ,

∞ - интеграл расходится, следовательно, дисперсия не существует.

14) Докажите, что для нормальной случайной величины Х с функцией плотности распределения математическое ожидание М(Х) = μ.

Формула

Докажем, что μ есть математическое ожидание.

Поопределению математического ожидания непрерывной с.в.,

Введем новую переменную . Отсюда . Приняв во внимание, что новые пределы интегрирования равны старым, получим

Первое из слагаемых равно нулю ввиду нечетности подинтегральной функции. Второе из слагаемых равно μ (интеграл Пуассона ).

Итак, M(X)=μ , т.е. математическое ожидание нормального распределения равно параметру μ.

15) Докажите, что для нормальной случайной величины Х с функцией плотности распределения диспресия D(X) = σ 2 .

Формула описывает плотность нормального распределения вероятностей непрерывной с.в..

Докажем, что - среднее квадратическое отклонение нормального распределения. Введем новую переменную z=(х-μ)/ . Отсюда . Приняв во внимание, что новые пределы инте­грирования равны старым, получим Интегрируя по частям, положив u=z , найдем Следовательно, .Итак, среднее квадратическое отклонение нормального распределения равно параметру .

16) Докажите, что для непрерывной случайной величины, распределенной по показательному закону с параметром , математическое ожидание .

Говорят, что случайная величина X, принимающая только неотрицательные значения, распределена по показательному закону, если для некоторого положительного параметра λ>0 функция плотности имеет вид:

Для нахождения математического ожидания воспользуемся формулой

Начнем с примера. В урне, стоящей перед вами, с равной вероятностью могут быть (1) два белых шара, (2) один белый и один черный, (3) два черных. Вы тащите шар, и он оказывается белым. Как теперь вы оцените вероятность этих трех вариантов (гипотез)? Очевидно, что вероятность гипотезы (3) с двумя черными шарами = 0. А вот как подсчитать вероятности двух оставшихся гипотез!? Это позволяет сделать формула Байеса, которая в нашем случае имеет вид (номер формулы соответствует номеру проверяемой гипотезы):

Скачать заметку в формате или

х – случайная величина (гипотеза), принимающая значения: х 1 – два белых, х 2 – один белый, один черный; х 3 – два черных; у – случайная величина (событие), принимающая значения: у 1 – вытащен белый шар и у 2 – вытащен чёрный шар; Р(х 1) – вероятность первой гипотезы до вытаскивания шара (априорная вероятность или вероятность до опыта) = 1/3; Р(х 2) – вероятность второй гипотезы до вытаскивания шара = 1/3; Р(х 3) – вероятность третьей гипотезы до вытаскивания шара = 1/3; Р(у 1 |х 1) – условная вероятность вытащить белый шар, в случае, если верна первая гипотеза (шары белые) = 1; Р(у 1 |х 2) вероятность вытащить белый шар, в случае, если верна вторая гипотеза (один шар белый, второй – черный) = ½; Р(у 1 |х 3) вероятность вытащить белый шар, в случае, если верна третья гипотеза (оба черных) = 0; Р(у 1) – вероятность вытащить белый шар = ½; Р(у 2) – вероятность вытащить черный шар = ½; и, наконец, то, что мы ищем – Р(х 1 |у 1) вероятность того, что верна первая гипотеза (оба шара белых), при условии, что мы вытащили белый шар (апостериорная вероятность или вероятность после опыта); Р(х 2 |у 1) вероятность того, что верна вторая гипотеза (один шар белый, второй – черный), при условии, что мы вытащили белый шар.

Вероятность того, что верна первая гипотеза (два белых), при условии, что мы вытащили белый шар :

Вероятность того, что верна вторая гипотеза (один белый, второй – черный), при условии, что мы вытащили белый шар :

Вероятность того, что верна третья гипотеза (два черных), при условии, что мы вытащили белый шар :

Что делает формула Байеса? Она дает возможность на основании априорных вероятностей гипотез – Р(х 1), Р(х 2) , Р(х 3) – и вероятностей наступления событий – Р(у 1), Р(у 2) – подсчитать апостериорные вероятности гипотез, например, вероятность первой гипотезы, при условии, что вытащили белый шар – Р(х 1 |у 1) .

Вернемся еще раз к формуле (1). Первоначальная вероятность первой гипотезы была Р(х 1) = 1/3. С вероятностью Р(у 1) = 1/2 мы могли вытащить белый шар, и с вероятностью Р(у 2) = 1/2 – черный. Мы вытащили белый. Вероятность вытащить белый при условии, что верна первая гипотеза Р(у 1 |х 1) = 1. Формула Байеса говорит, что так как вытащили белый, то вероятность первой гипотезы возросла до 2/3, вероятность второй гипотезы по-прежнему равна 1/3, а вероятность третьей гипотезы обратилась в ноль.

Легко проверить, что вытащи мы черный шар, апостериорные вероятности изменились бы симметрично: Р(х 1 |у 2) = 0, Р(х 2 |у 2) = 1/3, Р(х 3 |у 2) = 2/3.

Вот что писал Пьер Симон Лаплас о формуле Байеса в работе , вышедшей в 1814 г.:

Это основной принцип той отрасли анализа случайностей, которая занимается переходами от событий к причинам.

Почему формула Байеса так сложна для понимания!? На мой взгляд, потому, что наш обычный подход – это рассуждения от причин к следствиям. Например, если в урне 36 шаров из которых 6 черных, а остальные белые. Какова вероятность вытащить белый шар? Формула Байеса позволяет идти от событий к причинам (гипотезам). Если у нас было три гипотезы, и произошло событие, то как именно это событие (а не альтернативное) повлияло на первоначальные вероятности гипотез? Как изменились эти вероятности?

Я считаю, что формула Байеса не просто о вероятностях. Она изменяет парадигму восприятия. Каков ход мыслей при использовании детерминистской парадигмы? Если произошло событие, какова его причина? Если произошло ДТП, чрезвычайное происшествие, военный конфликт. Кто или что явилось их виной? Как думает байесовский наблюдатель? Какова структура реальности, приведшая в данном случае к такому-то проявлению… Байесовец понимает, что в ином случае результат мог быть иным…

Немного иначе разместим символы в формулах (1) и (2):

Давайте еще раз проговорим, что же мы видим. С равной исходной (априорной) вероятностью могла быть истинной одна из трех гипотез. С равной вероятностью мы могли вытащить белый или черный шар. Мы вытащили белый. В свете этой новой дополнительной информации следует пересмотреть нашу оценку гипотез. Формула Байеса позволяет это сделать численно. Априорная вероятность первой гипотезы (формула 7) была Р(х 1) , вытащили белый шар, апостериорная вероятность первой гипотезы стала Р(х 1 |у 1). Эти вероятности отличаются на коэффициент .

Событие у 1 называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим гипотезу х 1 . Указанный коэффициент иногда называют мощностью свидетельства. Чем мощнее свидетельство (чем больше коэффициент отличается от единицы), тем больше факт наблюдения у 1 изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое (коэффициент ~ 1), апостериорная вероятность почти равна априорной.

Свидетельство у 1 в = 2 раза изменило априорную вероятность гипотезы х 1 (формула 4). В то же время свидетельство у 1 не изменило вероятность гипотезы х 2 , так как его мощность = 1 (формула 5).

В общем случае формула Байеса имеет следующий вид:

х – случайная величина (набор взаимоисключающих гипотез), принимающая значения: х 1 , х 2 , … , х n . у – случайная величина (набор взаимоисключающих событий), принимающая значения: у 1 , у 2 , … , у n . Формула Байеса позволяет найти апостериорную вероятность гипотезы х i при наступлении события y j . В числителе – произведение априорной вероятности гипотезы х i Р(х i ) на вероятность наступления события y j , если верна гипотеза х i Р(y j i ). В знаменателе – сумма произведений того же, что и в числителе, но для всех гипотез. Если вычислить знаменатель, то получим суммарную вероятность наступления события у j (если верна любая из гипотез) – Р(y j ) (как в формулах 1–3).

Еще раз о свидетельстве. Событие y j дает дополнительную информацию, что позволяет пересмотреть априорную вероятность гипотезы х i . Мощность свидетельства – – содержит в числителе вероятность наступления события y j , если верна гипотеза х i . В знаменателе – суммарная вероятность наступления события у j (или вероятность наступления события у j усредненная по всем гипотезам). у j выше для гипотезы x i , чем в среднем для всех гипотез, то свидетельство играет на руку гипотезе x i , увеличивая ее апостериорную вероятность Р(y j i ). Если вероятность наступления события у j ниже для гипотезы x i , чем в среднем для всех гипотез, то свидетельство понижает, апостериорную вероятность Р(y j i ) для гипотезы x i . Если вероятность наступления события у j для гипотезы x i такая же, как в среднем для всех гипотез, то свидетельство не изменяет апостериорную вероятность Р(y j i ) для гипотезы x i .

Предлагаю вашему вниманию несколько примеров, которые, надеюсь, закрепят ваше понимание формулы Байеса.

Задача 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку. .

Задача 3. Объект, за которым ведется наблюдение, может быть в одном из двух состояний: Н 1 = {функционирует} и Н 2 = {не функционирует}. Априорные вероятности этих состояний Р(Н 1) = 0,7, Р(Н 2) = 0,3. Имеется два источника информации, которые приносят разноречивые сведения о состоянии объекта; первый источник сообщает, что объект не функционирует, второй - что функционирует. Известно, что первый источник дает правильные сведения с вероятностью 0,9, а с вероятностью 0,1 - ошибочные. Второй источник менее надежен: он дает правильные сведения с вероятностью 0,7, а с вероятностью 0,3 - ошибочные. Найдите апостериорные вероятности гипотез. .

Задачи 1–3 взяты из учебника Е.С.Вентцель, Л.А.Овчаров. Теория вероятностей и ее инженерные приложения, раздел 2.6 Теорема гипотез (формула Байеса).

Задача 4 взята из книги , раздел 4.3 Теорема Байеса.

При выводе формулы полной вероятности предполагалось, что событие А , вероятность которого следовало определить, могло произойти с одним из событий Н 1 , Н 2 , ... , Н n , образующих полную группу попарно несовместных событий. При этом вероятности указанных событий (гипотез) были известны заранее. Предположим, что произведен эксперимент, в результате которого событие А наступило. Эта дополнительная информация позволяет произвести переоценку вероятностей гипотез Н i , вычислив Р(Н i /А).

или, воспользовавшись формулой полной вероятности, получим

Эту формулу называют формулой Байеса или теоремой гипотез. Формула Байеса позволяет «пересмотреть» вероятности гипотез после того, как становится известным результат опыта, в результате которого появилось событие А .

Вероятности Р(Н i) − это априорные вероятности гипотез (они вычислены до опыта). Вероятности же Р(Н i /А) − это апостериорные вероятности гипотез (они вычислены после опыта). Формула Байеса позволяет вычислить апостериорные вероятности по их априорным вероятностям и по условным вероятностям события А .

Пример . Известно, что 5 % всех мужчин и 0.25 % всех женщин дальтоники. Наугад выбранное лицо по номеру медицинской карточки страдает дальтонизмом. Какова вероятность того, что это мужчина?

Решение . Событие А – человек страдает дальтонизмом. Пространство элементарных событий для опыта – выбран человек по номеру медицинской карточки – Ω = {Н 1 , Н 2 } состоит из 2 событий:

Н 1 −выбран мужчина,

Н 2 −выбрана женщина.

Эти события могут быть выбраны в качестве гипотез.

По условию задачи (случайный выбор) вероятности этих событий одинаковые и равны Р(Н 1 ) = 0.5; Р(Н 2 ) = 0.5.

При этом условные вероятности того, что человек страдает дальтонизмом, равны соответственно:

Р(А/Н 1 ) = 0.05 = 1/20; Р(А/Н 2 ) = 0.0025 = 1/400.

Так как известно, что выбранный человек дальтоник, т. е. событие произошло, то используем формулу Байеса для переоценки первой гипотезы:

Пример. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором – 10 белых и 10 черных, в третьем – 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.

Решение . Обозначим через А событие – появление белого шара. Можно сделать три предположения (гипотезы) о выборе ящика: Н 1 , Н 2 , Н 3 − выбор соответственно первого, второго и третьего ящика.

Так как выбор любого из ящиков равновозможен, то вероятности гипотез одинаковы:

Р(Н 1 )=Р(Н 2 )=Р(Н 3 )= 1/3.

По условию задачи вероятность извлечения белого шара из первого ящика

Вероятность извлечения белого шара из второго ящика



Вероятность извлечения белого шара из третьего ящика

Искомую вероятность находим по формуле Байеса:

Повторение испытаний. Формула Бернулли .

Проводится n испытаний, в каждом из которых событие А может произойти или не произойти, причем вероятность события А в каждом отдельном испытании постоянна, т.е. не меняется от опыта к опыту. Как найти вероятность события А в одном опыте мы уже знаем.

Представляет особый интерес вероятность появления определенного числа раз (m раз) события А в n опытах. подобные задачи решаются легко, если испытания являются независимыми.

Опр. Несколько испытаний называюся независимыми относительно события А , если вероятность события А в каждом из них не зависит от исходов других опытов.

Вероятность Р n (m) наступления события А ровно m раз (ненаступление n-m раз, событие ) в этих n испытаниях. Событие А появляется в самых разных последовательностях m раз).

- формулу Бернулли.

Очевидны следующие формулы:

Р n (mменее k раз в n испытаниях.

P n (m>k) = P n (k+1) + P n (k+2) +…+ P n (n) - вероятность наступления события А более k раз в n испытаниях.

При выводе формулы полной вероятности предполагалось, что вероятности гипотез известны до опыта. Формула Байеса позволяет производить переоценку первоначальных гипотез в свете новой информации, состоящей в том, что событие произошло. Поэтому формулу Байеса называют формулой уточнения гипотез.

Теорема (Формула Байеса). Если событие может происходить только с одной из гипотез
, которые образуют полную группу событий, то вероятность гипотез при условии, что событие произошло, вычисляется по формуле

,
.

Доказательство.

Формула Байеса или байесовский подход к оценке гипотез играет важную роль в экономике, т.к. дает возможность корректировать управленческие решения, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и.т.п.

Пример. Электролампы изготовляются на двух заводах. Первый завод производит 60% общего количества электроламп, второй – 40%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%. В магазин поступает продукция обоих заводов. Лампочка купленная в магазине оказалась стандартной. Найти вероятность того, что лампа изготовлена на первом заводе.

Запишем условие задачи, вводя соответствующие обозначения.

Дано: событие состоит в том, что лампа стандартная.

Гипотеза
состоит в том, что лампа изготовлена на первом заводе

Гипотеза
состоит в том, что лампа изготовлена на втором заводе

Найти
.

Решение.

5. Повторные независимые испытания. Формула Бернулли

Рассмотрим схему независимых испытаний или схему Бернулли , которая имеет важное научное значение и разнообразные практические применения.

Пусть производится независимых испытаний, в каждом из которых может произойти некоторое событие.

Определение. Испытания называются независимыми , если в каждом из них событие

, не зависящей от того появилось или не появилось событие
в других испытаниях.

Пример. На испытательный стенд поставлены 20 ламп накаливания, которые испытываются под нагрузкой в течении 1000 часов. Вероятность того, что лампа выдержит испытание, равна 0,8 и не зависит от того, что случилось с другими лампами.

В этом примере под испытанием понимается проверка лампы на ее способность выдержать нагрузку в течении 1000 часов. Поэтому число испытаний равно
. В каждом отдельном испытании возможны только два исхода:


Определение. Серия повторных независимых испытаний, в каждом из которых событие
наступает с одной и той же вероятностью
, не зависящей от номере испытания, называется
схемой Бернулли.

Вероятность противоположного события обозначают
, причем, как было доказано выше,

Теорема. В условиях схемы Бернулли вероятность того, что при независимых испытаниях событиепоявится
раз, определяется по формуле

где
число проведенных независимых испытаний;

число появлений события
;

вероятность наступления события
в отдельном испытании;

вероятность не наступления события
в отдельном испытании;

Цель работы: сформировать навыки решения задач по теории вероятностей с помощью формулы полной вероятности и формулы Байеса.

Формула полной вероятности

Вероятность события А , которое может наступить лишь при условии появления одного из несовместных событий В х,В 2 ,...,В п, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Эту формулу называют формулой полной вероятности.

Вероятность гипотез. Формула Байеса

Пусть событие А может наступить при условии появления одного из несовместных событий В ь В 2 ,...,В п, образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А . Требуется определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Условные вероятности гипотез находят по формуле

В этой формуле индекс / = 1,2

Эту формулу называют формулой Байеса (по имени английского математика, который её вывел; опубликована в 1764 г.). Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А .

Задача 1. Завод изготавливает определённого типа детали, каждая деталь имеет дефект с вероятностью 0,05. Деталь осматривается одним контролёром; он обнаруживает дефект с вероятностью 0,97, а если дефект не обнаружен, пропускает деталь в готовую продукцию. Кроме того, контролер может по ошибке забраковать деталь, не имеющую дефекта; вероятность этого равна 0,01. Найти вероятности следующих событий: А - деталь будет забракована; В - деталь будет забракована, но ошибочно; С - деталь будет пропущена в готовую продукцию с дефектом.

Решение

Обозначим гипотезы:

Н = (на контроль поступит стандартная деталь);

Н =(на контроль поступит нестандартная деталь).

Событие А = (деталь будет забракована).

Из условия задачи находим вероятности

Р Н (А) = 0,01; Pfi(A) = 0,97.

По формуле полной вероятности получаем

Вероятность того, что деталь будет забракована ошибочно, равна

Найдём вероятность того, что деталь будет пропущена в готовую продукцию с дефектом:

Ответ:

Задача 2. Изделие проверяется на стандартность одним из трёх товароведов. Вероятность того, что изделие попадёт к первому товароведу, равна 0,25, ко второму - 0,26 и к третьему - 0,49. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,95, вторым - 0,98, третьим - 0,97. Найти вероятность того, что стандартное изделие проверено вторым контролёром.

Решение

Обозначим события:

Л. = (изделие для проверки попадёт к /-му товароведу); / = 1, 2, 3;

В = (изделие будет признано стандартным).

По условию задачи известны вероятности:

Также известны условные вероятности

По формуле Байеса находим вероятность того, что стандартное изделие проверено вторым контролёром:

Ответ: «0,263.

Задача 3. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. С конвейера взята нестандартная деталь. Найти вероятность того, что эта деталь произведена вторым автоматом.

Решение

Обозначим события:

А. = (взятая с конвейера деталь произведена /-м автоматом); / = 1,2;

В = (взятая деталь окажется нестандартной).

Также известны условные вероятности

По формуле полной вероятности находим

По формуле Байеса находим вероятность того, что взятая нестандартная деталь произведена вторым автоматом:

Ответ: 0,75.

Задача 4. Испытывается прибор, состоящий из двух узлов, надёжность которых равна 0,8 и 0,9 соответственно. Узлы отказывают независимо друг от друга. Прибор отказал. Найти с учётом этого вероятности гипотез:

  • а) неисправен только первый узел;
  • б) неисправен только второй узел;
  • в) неисправны оба узла.

Решение

Обозначим события:

Д = (7-й узел не выйдет из строя); i = 1,2;

Д - соответствующие противоположные события;

А = (при испытании будет отказ прибора).

Из условия задачи получаем: Р(Д) = 0,8; Р(Л 2) = 0,9.

По свойству вероятностей противоположных событий

Событие А равно сумме произведений независимых событий

Используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получаем

Теперь находим вероятности гипотез:

Ответ:

Задача 5. На заводе болты изготавливаются на трёх станках, которые производят соответственно 25%, 30% и 45% всего количества болтов. В продукции станков брак составляет соответственно 4%, 3% и 2%. Какова вероятность того, что болт, случайно взятый из поступившей продукции, окажется дефектным?

Решение

Обозначим события:

4 = (наудачу взятый болт изготовлен на /-м станке); i = 1, 2, 3;

В = (взятый наудачу болт окажется дефектным).

Из условия задачи по формуле классической вероятности находим вероятности гипотез:

Также по формуле классической вероятности находим условные вероятности:

По формуле полной вероятности находим

Ответ: 0,028.

Задача 6. Электронная схема принадлежит одной из трёх партий с вероятностями 0,25; 0,5 и 0,25. Вероятность того, что схема проработает сверх гарантийного срока службы для каждой из партий, соответственно составляет 0,1; 0,2 и 0,4. Найти вероятность того, что наугад взятая схема проработает сверх гарантийного срока службы.

Решение

Обозначим события:

4 = (наугад взятая схема из г-й партии); i = 1, 2, 3;

В = (наугад взятая схема проработает сверх гарантийного срока службы).

По условию задачи известны вероятности гипотез:

Также известны условные вероятности:

По формуле полной вероятности находим

Ответ: 0,225.

Задача 7. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определить вероятность того, что отказали оба блока.

Решение

Обозначим события:

Д = (z-й блок выйдет из строя); i = 1,2;

А = (устройство выйдет из строя).

Из условия задачи по свойству вероятностей противоположных событий получаем: ДД) = 1-0,99 = 0,01; ДД) = 1-0,97 = 0,03.

Событие А наступает только тогда, когда наступает хотя бы одно из событий Д или А 2 . Поэтому это событие равно сумме событий А = Д + А 2 .

По теореме сложения вероятностей совместных событий получаем

По формуле Байеса находим вероятность того, что устройство вышло из строя из-за отказа обоих блоков.

Ответ:

Задачи для самостоятельного решения Задача 1. На складе телевизионного ателье имеется 70% кинескопов, изготовленных заводом № 1; остальные кинескопы изготовлены заводом № 2. Вероятность того, что кинескоп не выйдет из строя в течение гарантийного срока службы, равна 0,8 для кинескопов завода № 1 и 0,7 - для кинескопов завода № 2. Кинескоп выдержал гарантийный срок службы. Найти вероятность того, что он изготовлен заводом № 2.

Задача 2. На сборку поступают детали с трёх автоматов. Известно, что 1-й автомат даёт 0,3% брака, 2-й - 0,2%, 3-й - 0,4%. Найти вероятность поступления на сборку бракованной детали, если с 1-го автомата поступили 1000, со 2-го - 2000, с 3-го - 2500 деталей.

Задача 3. На двух станках производятся одинаковые детали. Вероятность того, что деталь, произведённая на первом станке, будет стандартной, равна 0,8, а на втором - 0,9. Производительность второго станка втрое больше производительности первого. Найти вероятность того, что стандартной будет деталь, взятая наудачу с транспортёра, на который поступают детали с обоих станков.

Задача 4. Руководитель компании решил воспользоваться услугами двух из трёх транспортных фирм. Вероятности несвоевременной доставки груза для первой, второй и третьей фирм равны соответственно 0,05; 0,1 и 0,07. Сопоставив эти данные с данными о безопасности грузоперевозок, руководитель пришёл к выводу о равнозначности выбора и решил сделать его по жребию. Найти вероятность того, что отправленный груз будет доставлен своевременно.

Задача 5. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определите вероятность того, что отказал второй блок.

Задача 6. В сборочный цех поступают детали с трёх автоматов. Первый автомат даёт 3% брака, второй - 1% и третий - 2%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата поступило соответственно 500, 200, 300 деталей.

Задача 7. На склад поступает продукция трёх фирм. Причём продукция первой фирмы составляет 20%, второй - 46% и третьей - 34%. Известно также, что средний процент нестандартных изделий для первой фирмы равен 5%, для второй - 2% и для третьей - 1%. Найти вероятность того, что наудачу взятое изделие произведено второй фирмой, если оно оказалось стандартным.

Задача 8. Брак в продукции завода вследствие дефекта а составляет 5%, причём среди забракованных по признаку а продукции в 10% случаев встречается дефект р. А в продукции, свободной от дефекта а , дефект р встречается в 1% случаев. Найти вероятность встречи дефекта Р во всей продукции.

Задача 9. В фирме имеются 10 новых автомобилей и 5 старых, которые ранее находились в ремонте. Вероятность исправной работы для нового авто равна 0,94, старого - 0,91. Найти вероятность того, что наудачу выбранный автомобиль будет исправно работать.

Задача 10. Два датчика посылают сигналы в общий канал связи, причём первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искажённый сигнал от первого датчика равна 0,01, от второго - 0,03. Какова вероятность получить искажённый сигнал в общем канале связи?

Задача 11. Имеется пять партий изделий: три партии по 8 штук, из которых 6 стандартных и 2 нестандартных, и две партии по 10 штук, из которых 7 стандартных и 3 нестандартных. Наудачу выбирают одну из партий, а из этой партии берут деталь. Определить вероятность того, что взятая деталь будет стандартной.

Задача 12. Сборщик получает в среднем 50% деталей первого завода, 30% - второго завода и 20% - третьего завода. Вероятность того, что деталь первого завода отличного качества, равна 0,7; для деталей второго и третьего заводов соответственно 0,8 и 0,9. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что деталь изготовлена первым заводом.

Задача 13. Таможенный досмотр автомашин осуществляют два инспектора. В среднем из 100 машин 45 проходят через первого инспектора. Вероятность того, что при досмотре машина, соответствующая таможенным правилам, не будет задержана, составляет 0,95 у первого инспектора и 0,85 - у второго. Найти вероятность того, что машина, соответствующая таможенным правилам, не будет задержана.

Задача 14. Детали, необходимые для сборки прибора, поступают с двух автоматов, производительность которых одинакова. Вычислите вероятность поступления на сборку стандартной детали, если один из автоматов даёт в среднем 3% нарушения стандарта, а второй - 2%.

Задача 15. Тренер по тяжёлой атлетике рассчитал, что для получения командных зачётных очков в данной весовой категории спортсмен должен толкнуть штангу в 200 кг. На место в команде претендуют Иванов, Петров и Сидоров. Иванов за время тренировок пытался поднять такой вес в 7 случаях, а поднял в 3 из них. Петров поднял в 6 случаях из 13, а Сидоров имеет 35%-ную вероятность успешно справиться со штангой. Тренер случайным жребием выбирает одного спортсмена в команду.

  • а) Найти вероятность того, что выбранный спортсмен принесёт команде зачётные очки.
  • б) Команда не получила зачётных очков. Найти вероятность того, что выступал Сидоров.

Задача 16. В белом ящике 12 красных и 6 синих шаров. В черном - 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Задача 17. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.

Задача 18. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Задача 19. В ящик, содержащий 3 одинаковые детали, брошена стандартная деталь, а затем наудачу одна деталь извлечена. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.

Задача 20. Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.