Энергия кванта. Кванты полей

Квантом гравитационного поля является гравитон. Однако гравитон пока не установлен экспериментально, равно как и не построена по сей день теория квантовой гравитации.

Квантом электромагнитного поля является фотон . Масса покоя фотона равна 0. Фотон не несет на себе электрического заряда. Это обеспечивает линейный характер электромагнитных взаимодействий и большой радиус их действия.

Квантами слабого взаимодействия являются три бозона - W + , W , Z 0 -бозоны. Верхние индексы указывают знак электрического заряда этих квантов. Кванты слабого взаимодействия имеют значительную массу, что приводит к тому, что слабое взаимодействие проявляется на очень коротких расстояниях.

Квантами сильного взаимодействия являются восемь глюонов. Свое название глюоны получили от английского слова glue (клей), ибо именно они ответственны за конфайнмент кварков. Массы покоя глюонов равны нулю. Однако глюоны обладают цветным зарядом, благодаря чему они способны к взаимодействию друг с другом, как говорят, к самодействию, что приводит к трудностям описания сильного взаимодействия математически ввиду его нелинейности. Если слабое взаимодействие ответственно за из-менение ароматов кварков, то сильное взаимодействие, осуществляемое посредством обмена глюонами между кварками, приводит к изменению цветов кварков. Так что в ядре постоянно происходят превращения протонов в нейтроны и наоборот - за счет обмена квантами слабого взаимодействия между кварками, вследствие чего u-кварк превращается в d-кварк и наоборот. Кроме этого внутри протонов и нейтронов кварки постоянно меняют свои цвета, испуская и поглощая глюоны. При этом протоны и нейтроны остаются бесцветными. Подобная инвариантность требует существования поля сильного взаимодействия для поддержания цветовой симметрии кварков. Хвост сильного вза-имодействия между кварками внутри протонов и нейтронов обеспечивает силы притяжения между протонами и протонами, протонами и нейтронами, нейтронами и нейтро-нами внутри ядра (ядерные силы).

Следует отметить, что взаимодействия, соответствующие калибровочной симметрии, характерны тем, что их величина определяется величиной заряда соответствующего вза-имодействия. То есть заряд калибровочного взаимодействия одновременно определяет и величину заряда элементарной частицы, и величину («силу») самого взаимодействия, так называемую константу связи. В настоящую эпоху эволюции Вселенной константы связи различных взаимодействий соотносятся следующим образом:

Где a S - константа связи сильного взаимодействия; а Е - константа связи электромагнитного взаимодействия; a W - константа связи слабого взаимодействия; a G - константа связи гравитационного взаимодействия.

С
овременные физики считают, что такое соотношение существовало не всегда. Иными словами, рассматриваемые постоянные не являются постоянными. И существовала эпоха в эволюции Вселенной, когда эти константы были равны. А это означает, что не существовало различий между четырьмя типами физических взаимодействий. Именно это обстоятельство и стимулирует физиков в построении единой теории всех физических взаимодействий - единой теории поля. Однако для того, чтобы понять те физические идеи, на которых базируется построение этой теории, следует сказать, что в действительности физика рассматривает материю не в двух проявлениях - веществе и поле, как это отмечается во многих физических справочниках, словарях и энциклопедиях, а в трех проявлениях. Третьим качественно отличным от вышеназванных двух форм материи является физический вакуум. Дело в том, что все кванты полей, рассмотренные нами ранее, являются векторными калибровочными бозонами. Калибровочными их называют по той причине, что они являются квантами калибровочных полей. Векторными их называют потому, что все они имеют целочисленное значение спина, равного единице (1), за исключением гравитона, спин которого предполагается равным двум (2). Физический вакуум нашей Вселенной рассматривается как коллективные возбуждения хиггсовых скалярных бозонов, спин которых равен нулю (0). Именно физический вакуум является прародителем всех частиц вещества и квантов полей, резервуаром, перекачка энергии из которого обеспечила их возникновение и функционирование. Способность вакуума в ходе эволюции Вселенной изменять свое состояние и привела к многообразию форм физического мира.

Составление представлений о структуре материи на разных этапах эволюции науки представлено ниже.

Некоторые люди думают, что квант — это лишь некая единица мельчайших размеров, никоим образом не относящаяся к реальной жизни. Однако дела обстоят далеко не так. Он не является только уделом занятия ученых. Квантовая теория важна для всех людей, так как помогает расширить свое сознание, значительно раздвигая границы миропонимания и заглядывая в самую его глубину. В ней изучается как микромир, так и обычный окружающий нас мир, на который чудесным образом удается посмотреть совершенно по-иному.

Понятие

Квант — это не есть нечто незначительное, касаемое лишь микромира. Он помогает описать окружающую реальность, исходя из собственных состояний.

Далеко не только материя и физические поля являются основой нашего мира. Они — лишь частица огромной квантовой реальности. Поэтому в будущем еще предстоит осмыслить всю глубину и широту этого простого, казалось бы, объяснения.

Квант — это неделимая фундаментальная единица энергии (quantum в переводе с латинского означает «сколько», «количество»), которая поглощается или отдается физической величиной.

Вокруг идеи развилось целое направление, получившее название квантовой физики. О ней говорят как о науке будущего.

Квантовая и классическая физика

Для большинства сначала новое направление покажется абсурдным и нелогичным. Но после углубленного изучения понятия приобретают глобальный смысл. Квантовая физика с легкостью может объяснить то, что классической не под силу.

В последней считается, что природа неизменна вне зависимости от способов ее описания. Но в квантовой физике это не так. В ее основе лежат не являющиеся основой а принцип суперпозиции. Согласно ему, квант — это частица, которая может находиться одновременно и в одном, и в другом состоянии, а также в их сумме. Поэтому невозможно рассчитать точно, где он будет находиться в какой-то момент времени. Возможно лишь вычисление вероятности.

В ней строится не физического тела, как обычно, а распределение вероятностей, изменяющихся во времени.

В классической физике также присутствует вероятность, но только в том случае, если исследователь не знает свойств объекта. В квантовой науке присутствует в любом случае всегда.

В классической механике используются любые значения скорости и энергии. В новой — только такие, которым соответствует собственное состояние. Это так называемые квантованные, определенные значения.

Гипотеза Макса Планка

Тело, которое нагрето, отдает и поглощает свет определенными порциями, а не непрерывно. Квант энергии — это и есть те минимальные частицы, о которых идет речь.

Каждая порция прямо пропорциональна частоте излучения. Коэффициент пропорциональности был назван в честь его открывателя постоянной Планка (хотя к нему некоторое отношение имел и Эйнштейн). Она равна 6,6265*10(-34) Дж/с.

Такова была гипотеза, озвученная Максом Планком в 1900 году, на основе которой удалось вычислить закон распределения энергии в спектре, который хорошо соответствовал экспериментальным данным. Таким образом, квантовая гипотеза подтверждалась. Она стала настоящей революцией. Множество физиков подхватило эту гипотезу, и так стала развиваться квантовая наука.

и квантовая реальность

Далеко не одним только научным деятелям-теоретикам было интересно новое направление. Многие мистические явления стало возможно объяснить научно. Хотя некоторые называют это «псевдонаукой».

Тем не менее, люди, интересовавшиеся ею, могли расширить границы своего восприятия и увидеть или почувствовать запредельное.

Например, стало очевидным, что квант света — это передача энергии Вселенной в сознание через пространственно-временной континиум. Ведь он является излучением энергии-частоты, которую называют также огненными символами ДНК или световыми кодами. Они поступают на планету через поток энергетической частоты. На теле человека — через систему чакр.

Сознание и материя — это энергия-частота. Все чувства, мысли и эмоции генерируют импульсы электричества, которые формируют световое тело. В основном на Земле имеются очень низкочастотные вибрации. Но те люди, которые научились получать из Вселенной энергию, входящую в квант излучения, это духовно развивающиеся индивиды, которые формируют свое световое тело на высоких частотах. Они могут не только освободиться от негативных вибраций, господствующих на планете, но и очищать пространство вокруг себя, помогая таким образом другим людям перейти на новый уровень развития.

Это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться со странностью субатомной сферы.

Для физика квантовая механика - одна из трех великих опор, на которых основано понимание природы (наряду с общей и специальной теориями относительности Эйнштейна). Для тех, кто всегда хотел хоть что-нибудь понять в фундаментальной модели устройства мира, объясняют ученые Брайан Кокс и Джефф Форшоу в своей книге «Квантовая вселенная ». Публикуем небольшой отрывок о сути кванта и истоках теории.

Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала столку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности.

Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий.

В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы.

Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Квантовая теория - возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального.

Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Представьте мир вокруг нас. Скажем, вы держите в руках книгу, сделанную из бумаги - перемолотой древесной массы. Деревья - это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода.

Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды - ядерного очага объемом в миллион таких планет, как Земля, - и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом - самой сложной структурой Вселенной, о которой мы вообще знаем.

Мы обнаружили, что все вещи в мире - не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц - электронов, протонов и нейтронов.

Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками , и на них уже все заканчивается - по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой ; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки - сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними.

Лучшие описания трех из четырех этих сил - сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, - предоставляет квантовая теория. Лишь сила тяжести - самая слабая, но, возможно, самая знакомая нам сила из всех - в настоящий момент не имеет удовлетворительного квантового описания.

Стоит признать, что квантовая теория имеет несколько странную репутацию, и ее именем прикрывается множество настоящей ахинеи. Коты могут быть одновременно живыми и мертвыми; частицы находятся в двух местах одновременно; Гейзенберг утверждает, что все неопределенно.

Все это действительно верно, но выводы, которые часто из этого следуют - раз в микромире происходит нечто странное, то мы окутаны дымкой тумана, - точно неверны. Экстрасенсорное восприятие, мистические исцеления, вибрирующие браслеты, которые защищают от радиации, и черт знает что еще регулярно прокрадывается в пантеон возможного под личиной слова « ».

Эту чепуху порождают неумение ясно мыслить, самообман, подлинное или притворное недопонимание либо какая-то особенно неудачная комбинация всего вышеперечисленного.

Квантовая теория точно описывает мир с помощью математических законов, на столько же конкретных, как и те, что использовали Ньютон или Галилей. Вот почему мы можем с невероятной точностью рассчитать магнитное поле электрона.

Квантовая теория предлагает такое описание природы, которое, как мы узнаем, имеет огромную предсказательную и объяснительную силу и распространяется на множество явлений - от кремниевых микросхем до звезд.

Как часто бывает, появление квантовой теории спровоцировали открытия природных явлений, которые нельзя было описать научными парадигмами того времени. Для квантовой теории таких открытий было много, притом разнообразного характера. Ряд необъяснимых результатов порождал ажиотаж и смятение и в итоге вызвал период экспериментальных и теоретических инноваций, который действительно заслуживает расхожего определения «золотой век ».

Имена главных героев навсегда укоренились в сознании любого студента-физика и чаще других упоминаются в университетских курсах и посей день: Резерфорд, Бор, Планк, Эйнштейн, Паули, Гейзенберг, Шредингер, Дирак. Возможно, в истории больше не случится периода, когда столько имен будут ассоциироваться с величием науки при движении к единой цели - созданию новой теории атомов и сил, управляющих физическим миром.

В 1924 году, оглядываясь на предшествующие десятилетия квантовой теории, Эрнест Резерфорд, физик новозеландского происхождения, открывший атомное ядро, писал:

«1896 год… ознаменовал начало того, что было довольно точно названо героическим веком физической науки. Никогда до этого в истории физики не наблюдалось такого периода лихорадочной активности, в течение которого одни фундаментально значимые открытия с бешеной скоростью сменяли другие. ».

Термин «квант» появился в физике в 1900 году благодаря работам Макса Планка. Он пытался теоретически описать излучение, испускаемое нагретыми телами, - так называемое «излучение абсолютно черного тела». Кстати, ученого наняла для этой цели компания, занимавшаяся электрическим освещением: так двери Вселенной порой открываются по самым прозаическим причинам.

Планк выяснил, что свойства излучения абсолютно черного тела можно объяснить, только если предположить, что свет испускается небольшими порциями энергии, которые он и назвал квантами. Само это слово означает «пакеты», или «дискретные». Изначально он считал, что это лишь математическая уловка, но вышедшая в 1905 году работа Альберта Эйнштейна о фотоэлектрическом эффекте поддержала квантовую гипотезу. Результаты были убедительными, потому что небольшие порции энергии могли быть синонимичны частицам.

Идея того, что свет состоит из потока маленьких пулек, имеет долгую и славную историю, начавшуюся с Исаака Ньютона и рождения современной физики. Однако в 1864 году шотландский физик Джеймс Кларк Максвелл, казалось, окончательно рассеял все существовавшие сомнения в ряде работ, которые Альберт Эйнштейн позднее охарактеризовал как «самые глубокие и плодотворные из всех, что знала физика со времен Ньютона».

Максвелл показал, что свет - это , распространяющаяся в , так что идея света как волны имела безукоризненное и, казалось бы, неоспоримое происхождение. Однако в серии экспериментов, которые Артур Комптон и его коллеги провели в Университете Вашингтона в Сент-Луисе, им удалось отделить световые кванты от электронов .

Те и другие вели себя скорее как бильярдные шары, что явно подтвердило: теоретические предположения Планка имели прочное основание в реальном мире. В 1926 году световые кванты получили название . Свидетельство было неопровержимым: свет ведет себя одновременно как волна и как частица. Это означало конец классической физики - и завершение периода становления квантовой теории .

Материалы по теме:

Раскройте свою истинную сущность и полностью доверяйте своей интуиции!

Раскройте свою истинную сущность и полностью доверяйте своей интуиции! Все Работники Света и те, кто стремится достичь Вознесения, должны следовать голосу своей интуиции. Следует знать, ...

Перестаньте искать себя и начните притворяться. Китайские философы научат вас хорошей жизни!

УЧИТЕ СВОИХ ДЕТЕЙ

УЧИТЕ СВОИХ ДЕТЕЙ Учите своих детей, что для того, чтобы быть счастливыми В жизни не надо иметь ничего дополнительно: Ни человека, ни места, ни какой-то вещи, Что настоящее...

Психотронное оружие и повсеместное облучение

Психотронное оружие и повсеместное облучение Наведение голосов в голове техническими методами стало широко известно еще с 1974 г., когда фирма Sharp запатентотовала устройство для передачи...

5G – умный рай или неконтролируемая опасность для человечества?

5G – умный рай или неконтролируемая опасность для человечества? Холодильник выбирает в интернет-магазине ингредиенты для запланированного ужина; чайник при приближении хозяина сам включается, а кондиционер...

), момента количества движения (углового момента), его проекции и других величин, которыми характеризуют физические свойства микро- (квантовых) систем . В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется ). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения - и последнее называют квантом . Например, энергия монохроматического электромагнитного излучения угловой частоты \omega может принимать значения (N+1/2)\hbar\omega, где \hbar - редуцированная постоянная Планка , а N - целое число. В этом случае \hbar\omega имеет смысл энергии кванта излучения (иными словами, фотона), а N - смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года - первой работе по квантовой теории, заложившей её основу. Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой .

Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика , квантовая теория поля , квантовая оптика и т. д.). Широко применяется термин квантование , означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения - например, говорят, что энергия электрона в атоме «квантуется».

Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц , соответствующих бозонным полям взаимодействия (фотон - квант электромагнитного поля , фонон - квант поля звуковых волн в кристалле , гравитон - гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.

Кроме того, по традиции «квантом действия» иногда называют постоянную Планка . В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной единицей измерения действия и других физических величин такой же размерности (например, момента импульса).

Некоторые кванты

Кванты некоторых полей имеют специальные названия:

  • фотон - квант электромагнитного поля ;
  • глюон - квант векторного (глюонного) поля в квантовой хромодинамике (обеспечивает сильное взаимодействие);
  • гравитон - гипотетический квант гравитационного поля ;
  • бозон Хиггса - квант поля Хиггса ;
  • фонон - квант колебательного движения кристалла.

Напишите отзыв о статье "Квант"

Примечания

Литература

  • Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). - Издание 6-е, исправленное. - М .: Физматлит , . - 800 с. - («Теоретическая физика», том III). - ISBN 5-9221-0530-2 .

Отрывок, характеризующий Квант

– А у меня четыре сына в армии, а я не тужу. На всё воля Божья: и на печи лежа умрешь, и в сражении Бог помилует, – прозвучал без всякого усилия, с того конца стола густой голос Марьи Дмитриевны.
– Это так.
И разговор опять сосредоточился – дамский на своем конце стола, мужской на своем.
– А вот не спросишь, – говорил маленький брат Наташе, – а вот не спросишь!
– Спрошу, – отвечала Наташа.
Лицо ее вдруг разгорелось, выражая отчаянную и веселую решимость. Она привстала, приглашая взглядом Пьера, сидевшего против нее, прислушаться, и обратилась к матери:
– Мама! – прозвучал по всему столу ее детски грудной голос.
– Что тебе? – спросила графиня испуганно, но, по лицу дочери увидев, что это была шалость, строго замахала ей рукой, делая угрожающий и отрицательный жест головой.
Разговор притих.
– Мама! какое пирожное будет? – еще решительнее, не срываясь, прозвучал голосок Наташи.
Графиня хотела хмуриться, но не могла. Марья Дмитриевна погрозила толстым пальцем.
– Казак, – проговорила она с угрозой.
Большинство гостей смотрели на старших, не зная, как следует принять эту выходку.
– Вот я тебя! – сказала графиня.
– Мама! что пирожное будет? – закричала Наташа уже смело и капризно весело, вперед уверенная, что выходка ее будет принята хорошо.
Соня и толстый Петя прятались от смеха.
– Вот и спросила, – прошептала Наташа маленькому брату и Пьеру, на которого она опять взглянула.
– Мороженое, только тебе не дадут, – сказала Марья Дмитриевна.
Наташа видела, что бояться нечего, и потому не побоялась и Марьи Дмитриевны.
– Марья Дмитриевна? какое мороженое! Я сливочное не люблю.
– Морковное.
– Нет, какое? Марья Дмитриевна, какое? – почти кричала она. – Я хочу знать!
Марья Дмитриевна и графиня засмеялись, и за ними все гости. Все смеялись не ответу Марьи Дмитриевны, но непостижимой смелости и ловкости этой девочки, умевшей и смевшей так обращаться с Марьей Дмитриевной.
Наташа отстала только тогда, когда ей сказали, что будет ананасное. Перед мороженым подали шампанское. Опять заиграла музыка, граф поцеловался с графинюшкою, и гости, вставая, поздравляли графиню, через стол чокались с графом, детьми и друг с другом. Опять забегали официанты, загремели стулья, и в том же порядке, но с более красными лицами, гости вернулись в гостиную и кабинет графа.

Раздвинули бостонные столы, составили партии, и гости графа разместились в двух гостиных, диванной и библиотеке.
Граф, распустив карты веером, с трудом удерживался от привычки послеобеденного сна и всему смеялся. Молодежь, подстрекаемая графиней, собралась около клавикорд и арфы. Жюли первая, по просьбе всех, сыграла на арфе пьеску с вариациями и вместе с другими девицами стала просить Наташу и Николая, известных своею музыкальностью, спеть что нибудь. Наташа, к которой обратились как к большой, была, видимо, этим очень горда, но вместе с тем и робела.
– Что будем петь? – спросила она.
– «Ключ», – отвечал Николай.
– Ну, давайте скорее. Борис, идите сюда, – сказала Наташа. – А где же Соня?
Она оглянулась и, увидав, что ее друга нет в комнате, побежала за ней.
Вбежав в Сонину комнату и не найдя там свою подругу, Наташа пробежала в детскую – и там не было Сони. Наташа поняла, что Соня была в коридоре на сундуке. Сундук в коридоре был место печалей женского молодого поколения дома Ростовых. Действительно, Соня в своем воздушном розовом платьице, приминая его, лежала ничком на грязной полосатой няниной перине, на сундуке и, закрыв лицо пальчиками, навзрыд плакала, подрагивая своими оголенными плечиками. Лицо Наташи, оживленное, целый день именинное, вдруг изменилось: глаза ее остановились, потом содрогнулась ее широкая шея, углы губ опустились.