Как это сделано, как это работает, как это устроено. Обзор: мировой рынок угольной генерации

До вчерашнего дня в моем представлении все угольные электростанции были примерно одинаковыми и представляли из себя идеальные съемочные площадки фильмов ужасов. С почерневшими от времени конструкциями, котлоагрегатами, турбинами, миллионами различных труб и их хитрых сплетений с щедрым слоем черной угольной пыли. Редкие рабочие, больше похожие на шахтеров, в скудном освещении зеленых газовых ламп ремонтируют какие-то сложные агрегаты, тут и там, шипя, вырываются клубы пара и дыма, на полу разлились густые лужи из жиж темного цвета, повсюду что-то капает. Вот примерно такими я видел угольные станции и считал, что век их уже уходит. Будущее за газом - думал я.

Оказывается, вовсе нет.

Вчера я посетил новейший угольный энергоблок Черепетской ГРЭС в Тульской области. Оказывается, что современные угольные станции вовсе не чумазые, и дым из их труб идет не густой и не черный.

1. Несколько слов о принципе работы ГРЭС . В котел с помощью насосов подается под большим давлением вода, топливо и атмосферный воздух. В топке котла происходит процесс горения - химическая энергия топлива превращается в тепловую. Вода протекает по трубной системе, расположенной внутри котла.

2. Сгорающее топливо является мощным источником теплоты, передающейся воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C и под высоким давлением 13–24 МПа по одному или нескольким трубопроводам подается в паровую турбину.

3. Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.

4. Забор воды осуществляется непосредственно из Черепетского водохранилища.

5. Вода проходит химическую очистку и глубокое обессоливание, чтобы в паровых котлах и турбинах не появлялись отложения на внутренних поверхностях оборудования.

6. Железнодорожным транспортом на станцию доставляются уголь и мазут.

7. На открытом складе угля краны-перегружатели разгружают вагоны. Дальше в дело вступает большой , который подает на конвейер.

8. Так уголь попадает на участки дробильной установки для предварительного измельчения угля и последующего пылеприготовления. В сам котел уголь подается в виде смеси угольной пыли и воздуха.

10. Котельная установка располагается в котельном отделении главного корпуса. Сам котел - это что-то гениальное. Огромный сложный механизм высотой с 10-этажный дом.

14. Гулять по лабиринтам котельной установки можно вечно. Время, отведенное на съемку дважды успело закончиться, но оторваться от этой промышленной красоты было невозможно!

16. Галереи, лифтовые шахты, переходы, лестницы и мосты. Одним словом - космос)

17. Лучи солнца осветили крошечного на фоне всего происходящего человека, и я невольно задумался, что все эти сложные гигантские конструкции придумал и построил человек. Вот такой маленький человек придумал десятиэтажные печи, чтобы в промышленных масштабах вырабатывать электроэнергию из полезного ископаемого.

18. Красота!


19. За стеной от котельной установки располагается машинный зал с турбогенераторами. Еще одно гигантское помещение, более просторное.

20. Вчера был торжественно введен в эксплуатацию энергоблок №9, что явилось завершающим этапом проекта расширения Черепетской ГРЭС. Проект включал строительство двух современных пылеугольных энергоблоков мощностью по 225 МВт каждый.

21. Гарантированная электрическая мощность нового энергоблока - 225 МВт;
Электрический КПД - 37.2 %;
Удельный расход условного топлива на выработку электроэнергии - 330 гут/кВт*ч.

23. В состав основного оборудования входят две паровые конденсационные турбины производства ОАО «Силовые машины» и два котлоагрегата, производителя ОАО «ЭМАльянс». Основное топливо нового энергоблока - Кузнецкий каменный уголь марки ДГ.

24. Пультовая.

25. Энергоблоки оснащены первой на российском рынке интегрированной системой сухой пыле-сероочистки дымовых газов с электростатическими фильтрами.

26. Трансформаторы ОРУ.

28. Ввод нового энергоблока позволит вывести из эксплуатации устаревшее угольное оборудование первой очереди без снижения объема выработки электроэнергии и суммарной установленной мощности станции.

29. Вместе с новым энергоблоком были построены две 87-метровые градирни - часть системы технического водоснабжения, которая обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин.

30. Семь пролетов по 12 метров. Снизу такая высота кажется не такой серьезной.

31. На верхней площадке трубы было одновременно и жарко и прохладно. Фотоаппарат постоянно запотевал.

32. Вид на энергоблок с градирни. Новые энергомощности станции спроектированы таким образом, чтобы значительно снизить выбросы загрязняющих веществ, сократить пылевыделение при работе на складе угля, уменьшить количество потребляемой воды, а также исключить возможность загрязнения окружающей среды сточными водами.

34. Внутри градирни все оказалось довольно просто и скучно)

36. На фотографии хорошо виден новый энергоблок и два старых. Как коптит труба старого энергоблока и нового. Постепенно старые энергоблоки выведут из эксплуатации и разберут. Такие дела.

Тепловая электростанция

Теплова́я электроста́нция

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС – основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70–80 % (в России в 2000 г. – ок. 67 %). Тепловая на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое сжигают в котлоагрегатах ТЭС. В качестве топлива используется уголь, природный газ, мазут, горючие . На тепловых паротурбинных электростанциях (ТПЭС) получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину , соединённую с электрическим генератором. На таких электростанциях вырабатывается почти вся электроэнергия, производимая ТЭС (99 %); их кпд приближается к 40 %, единичная установленная мощность – к 3 МВт; топливом для них служат уголь, мазут, торф, сланцы, природный газ и т. д. Электростанции с теплофикационными паровыми турбинами, на которых тепло отработанного пара утилизируется и выдаётся промышленным или коммунальным потребителям, называются теплоэлектроцентралями. На них вырабатывается примерно 33 % электроэнергии, производимой ТЭС. На электростанциях с конденсационными турбинами весь отработанный пар конденсируется и в виде пароводяной смеси возвращается в котлоагрегат для повторного использования. На таких конденсационных электростанциях (КЭС) вырабатывается ок. 67 % электроэнергии, производимой на ТЭС. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

Паровые турбины ТЭС соединяют с электрогенераторами обычно непосредственно, без промежуточных передач, образуя турбоагрегат. Кроме того, как правило, турбоагрегат объединяют с парогенератором в единый энергоблок, из них затем компонуют мощные ТПЭС.

В камерах сгорания газотурбинных тепловых электростанций сжигают газ или жидкое топливо. Получаемые продукты сгорания поступают на газовую турбину , вращающую электрогенератор. Мощность таких электростанций, как правило, составляет несколько сотен мегаватт, кпд – 26–28 %. Газотурбинные электростанции обычно сооружают в блоке с паротурбинной электростанцией для покрытия пиков электрической нагрузки. Условно к ТЭС относят также атомные электростанции (АЭС), геотермальные электростанции и электростанции с магнитогидродинамическими генераторами . Первые ТЭС, работающие на угле, появились в 1882 г. в Нью-Йорке, в 1883 г. – в Санкт-Петербурге.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "тепловая электростанция" в других словарях:

    Тепловая электростанция - (ТЭС) - электрическая станция (комплекс оборудования, установок, аппаратуры), вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В настоящее время среди ТЭС… … Нефтегазовая микроэнциклопедия

    тепловая электростанция - Электростанция, преобразующая химическую энергию топлива в электрическую энергию или электрическую энергию и тепло. [ГОСТ 19431 84] EN thermal power station a power station in which electricity is generated by conversion of thermal energy Note… … Справочник технического переводчика

    тепловая электростанция - Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива … Словарь по географии

    - (ТЭС) вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Большой Энциклопедический словарь

    ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ - (ТЭС) предприятие для производства электрической энергии в результате преобразования энергии, выделяющейся при сжигании органического топлива. Основные части ТЭС котельная установка, паровая турбина и электрогенератор, превращающий механическую… … Большая политехническая энциклопедия

    Тепловая электростанция - ПГУ 16. Тепловая электростанция По ГОСТ 19431 84 Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    - (ТЭС),вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. ТЭС работают на твёрдом, жидком, газообразном и смешанном топливе (угле, мазуте, природном газе, реже буром… … Географическая энциклопедия

    - (ТЭС), вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Энциклопедический словарь

    тепловая электростанция - šiluminė elektrinė statusas T sritis automatika atitikmenys: angl. thermal power station; thermal station vok. Wärmekraftwerk, n rus. тепловая электростанция, f pranc. centrale électrothermique, f; centrale thermoélectrique, f … Automatikos terminų žodynas

    тепловая электростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

    - (ТЭС) Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 в Нью Йорке, 1883 в Петербурге, 1884 в… … Большая советская энциклопедия

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

С 2000 года генерирующая мощность на угле в мире удвоилась до 2000 ГВт в результате взрывного роста инвестпроектов в Китае и Индии. Еще 200 ГВт строится и 450 ГВт запланировано по всему миру. В последние десятилетия угольные электростанции вырабатывают 40−41% электроэнергии в мире - самую большую долю в сравнении с другими типами генерации. В то же время пик выработки электроэнергии из угля был достигнут в 2014 г. и сейчас начался девятый вал снижения загрузки действующих ТЭС и их закрытия. Об этом в обзоре Carbon Brief.

С 2000 года генерирующая мощность на угле в мире удвоилась до 2000 ГВт в результате взрывного роста инвестпроектов в Китае и Индии. Еще 200 ГВт строится и 450 ГВт запланировано по всему миру. В клубе угольных генераторов - 77 стран, еще 13 планируют присоединиться к нему до 2030 г.

В последние десятилетия угольные электростанции вырабатывают 40−41% электроэнергии в мире - самую большую долю в сравнении с другими типами генерации.

В то же время пик выработки электроэнергии из угля был достигнут в 2014 г. и сейчас начался девятый вал снижения загрузки действующих ТЭС и их закрытия. За несколько лет в ЕС и США были закрыты 200 ГВт, еще 170 ГВт должны быть остановлены до 2030 г. По состоянию на 9 апреля 2018 года, 27 стран присоединились к Альянсу поэтапного отказа от угольной генерации, из которых 13 стран имеют действующие электростанции.

Отметим, что с 2010 г. по 2017 г. только 34% запланированных угольных мощностей были построены или переведены в состояние строительства (873 ГВт), тогда как 1700 ГВт было отменено или отложено, сообщает CoalSwarm. Например, тендер на строительство одной новой станции может привлечь несколько заявок, каждая из которых будет засчитана в «плановую мощность».

По данным Международного энергетического агентства (МЭА), все станции на необработанном угле должны закрыться в течение нескольких десятилетий, если потепление должно быть ограничено менее чем на 2C выше доиндустриальных температур. Чтобы пролить свет на эту историю, Carbon Brief составил карту прошлого, настоящего и будущего всех угольных электростанций мира по данным на февраль 2018 года (https://www.carbonbrief.org/mapped-worlds-coal-power-plants), которая показывает все угольные ТЭС свыше 30 МВт каждая, работавших в период 2000−2017 гг., а также местоположение планируемых. Карта включает около 10000 закрытых, действующих и планируемых угольных установок общей мощностью 4567 ГВт, из которых 1,996 ГВт работает сегодня, 210 ГВт находится в стадии строительства, 443 ГВт планируется, 2,387 ГВт выбывает и 1,681 ГВт было предложено построить, но затем отменено с 2010 года в 95 странах мира. В мире насчитывается также порядка 27 ГВт малых угольных ТЭС — до 30 МВт каждая.

Рост угольной мощности

Угольная генерация - это, прежде всего, обещание дешевой электроэнергии для стимулирования экономического роста. Мировые мощности по угольной генерации росли ежегодно в период 2000−2017 гг., почти удвоившись с 1,063 ГВт до 1,995 ГВт. На угле производят 40−41% мирового электричества, наибольшую долю в последние десятилетия. Сегодня угольную энергетику используют 77 стран мира по сравнению с 65 в 2000 г. Еще 13 планируют вступить в клуб угольной энергетики.

Выбросов CO2 от существующих установок достаточно, чтобы нарушить углеродный бюджет на 1,5 или 2 градуса по Цельсию. Согласно исследованию, эти ограничения означали бы отсутствие новых угольных электростанций и досрочное закрытие 20% флота угольной генерации. По данным МЭА, все ТЭС на необогащенном угле должны будут закрыться к 2040 г., чтобы мир мог оставаться «значительно ниже» роста на 2 градуса по цельсию. Это означало бы закрытие 100 ГВт угольной мощности каждый год в течение 20 лет или примерно одного угольного блока каждый день до 2040 г.

Тем не менее, газетные заголовки и энергетические прогнозы предполагают, что рост угля не остановится. Эти мрачные перспективы ухудшения климата сдерживаются признаками быстрых изменений в энергетике. Конвейер строящихся или запланированных угольных блоков сократился вдвое с 2015 г. Темпы закрытия ТЭС ускоряются, достигнув суммарного уровня в 197 ГВт между 2010 и 2017 гг.

Замедление темпов роста угля

МЭА считает, что пик инвестиций в мировую угольную энергетику уже пройден и отрасль перешла в фазу «драматического замедления». В отчете МЭА говорится, что Китай, который обеспечивает большую часть нынешнего прироста, больше не нуждается в новых ТЭС.

Провал в инвестициях означает, что рост угольной мощности замедляется. И если в 2011 г. в мире было введено 82 ГВт, то в 2017 г. - лишь 34 ГВт.

Число вновь строящихся станций с каждым годом сокращается все быстрее, на 73% с 2015 г., согласно последнему годовому отчету CoalSwarm, Greenpeace и Sierra Club. Китай закрывает многие сотни мелких, старых и менее эффективных установок, заменяя их более крупными и эффективными. Все это означает, чтоглобальная мощность угольной генерацииможет достичь пика уже в 2022 г., говорится в отчете о состоянии отрасли МЭА.

Пиковые выбросы CO2

Данные МЭА показывают, что выбросы CO2 от угольной энергетики, возможно, уже достигли своего пика в 2014 г ., несмотря на то, что угольная мощность продолжает расти. Выбросы угольного CO2 упали на 3,9% в период 2014−2016 гг., производство угля на 4,3%.

Поскольку мощность угля продолжает увеличиваться, существующие угольные электростанции работают меньше часов. В среднем мировые угольные электростанции работали примерно половину времени в 2016 г., с коэффициентом загрузки 52,5%. Аналогичная тенденция наблюдается в США (52%), ЕС (46%), Китае (49%) и Индии (60%).

Также ряд других факторов влияет на взаимосвязь между угольными ТЭС и выбросами CO2. К ним относятся тип угля и технологии сжигания, используемые каждой установкой. ТЭС, сжигающие низкокачественный лигнит, могут выделять до 1200 тонн CO2 в ГВт*ч вырабатываемой электроэнергии. Высококачественный уголь выделяет меньше выбросов.

Технология сжигания также важна, от менее эффективных «подкритических» установок до ультра-сверхкритических систем, которые повышают эффективность работы котла при более высоких давлениях. Самые старые и наименее эффективные подкритические установки работают с КПД 35%. Новые технологии поднимают этот показатель до 40%, а ультра-сверхкритические до 45% (HELE).

Однако, по данным Всемирной угольной Ассоциации, даже угольные блоки HELE выбрасывают около 800tCO2/ГВт. Это примерно в два раза выше выбросов газовой электростанции и порядка в 50−100 раз выше атомной, ветровой и солнечной. МЭА не видит дальнейшей перспективы для угольной энергетики в сценариях до «2C», поскольку остаточные выбросы слишком высоки, даже при использовании улавливания и хранения углерода.

В 2017 г. произошел небольшой всплеск производства угля и выбросов CO2, вызванный ростом выработки в Китае, хотя они остаются ниже пика 2014 г.

Эрозия угольной экономики

Низкий уровень загрузки электростанций (ЧЧИ) является «коррозийным» для экономики угольных ТЭС. В целом они рассчитаны на эксплуатацию не менее 80% времени, так как имеют относительно высокие постоянные затраты. Это также является основой сметы расходов на строительство нового угольного блока, в то время как меньшая загрузка повышает затраты на единицу электроэнергии. Динамика падения ЧЧИ особенно токсична для операторов угольных электростанций, конкурирующих с быстро падающими ценами на возобновляемые источники энергии, дешевым газом в США и растущими ценами на уголь в ЕС. Ограничения на поставки угля повышают цены на уголь, что еще больше подрывает любые сохраняющиеся преимущества по сравнению с альтернативами.

Новые экологические нормы увеличивают стоимость угольных электростанций во многих юрисдикциях от ЕС до Индии и Индонезии. Владельцы угольных станций должны инвестировать в очистные сооружения, чтобы соответствовать более высоким экологическим стандартам, или закрыть свои грязные ТЭС в целом. Такое сочетание факторов означает, что большинство станций существующего угольного «флота» в ЕС и даже в Индии сталкивается с серьезными экономическими проблемами, согласно Financial thinktank Carbon Tracker. Было установлено, что к 2030 г., например, почти все угольные ТЭС ЕС будут убыточными. Основатель Bloomberg New Energy Finance Майкл Либрейх говорит, что уголь сталкивается с двумя «переломными моментами». Первый — когда новая возобновляемая энергия становится дешевле новых угольных ТЭС, что уже произошло в нескольких регионах. Второй, когда новые возобновляемые источники энергии — дешевле действующих угольных электростанций.

Обратите внимание, чтоугольные ТЭС могут продолжать работать в неблагоприятных экономических условиях, например, при доплате за мощность. Такую практику ввел ряд стран ЕС в 2018 г.

В 2018 г. Китай, Вьетнам и Таиланд полностью отменили доплату за солнечную генерацию. Филиппины и Индонезия существеннно ее сократили. А в Индии солнечная генерация - уже дешевле угольной. То есть, в условиях реальной конкуренции угольная генерация в странах Юго-Восточной Азии уже проигрывает ВИЭ и будет развиваться медленнее запланированного.

Ключевые страны и регионы

77 стран используют уголь для производства электроэнергии по сравнению с 65 странами в 2000 г. С тех пор 13 стран построили угольные мощности и всего одна страна - Бельгия - закрыла их. Еще 13 стран, на долю которых приходится 3% нынешних мощностей, обязались к 2030 г. отказаться от угля в рамках “Альянса оставивших уголь в прошлом”, возглавляемого Великобританией и Канадой. Между тем, 13 стран надеются еще присоединиться к угольному энергетическому клубу.

Топ-10 стран мира, показанных в левой стороне таблицы ниже, составляют 86% от общего количества работающих электростанций на угле. Справа в Таблице — Топ-10 стран, планирующих строительство 64% мощностей на угле в мире.

Страна/действующие МВт/доля в мире Страна/строящиеся МВт/доля

Китай 935,472 47% Китай 210,903 32%

США 278,823 14% Индия 131,359 20%

Индия 214,910 11% Вьетнам 46,425 7%

Германия 50,400 3% Турция 42,890 7%

Россия 48,690 2% Индонезия 34,405 5%

Япония 44,578 2% Бангладеш 21,998 3%

Южная Африка 41,307 2% Япония 18,575 3%

Южная Корея 37,973 2% Египет 14,640 2%

Польша 29,401 1% Пакистан 12,385 2%

Индонезия 28,584 1% Филиппины 12,141 2%

Китай имеет самый большой действуюбщий флот угольной генерации и является домом для создания самого мощного конвейера строящихся 97 ГВт в радиусе 250 км вдоль дельты реки Янцзы вокруг Шанхая. Это больше, чем уже существует в любой стране за исключением Индии и США. Россия имеет пятый по масштабу угольной генерации флот в мире, что составляет всего 2% мировой генерирующей мощности.

Китай

За прошедшие 20 лет наиболее значительные изменения произошли в Китае. Его флот угольной генерации вырос в пять раз в период между 2000 и 2017 гг. и достиг 935 ГВт или почти половину мировой мощности.

Китай также является крупнейшим в мире источником выбросов CO2 и использует половину потребляемого в мире угля, поэтому его будущий путь несоизмеримо важен для глобальных усилий в борьбе с изменением климата.

Промышленная активность и использование угля стимулировались до назначения Председателя Си «лидером на всю жизнь». Такая энергополитика может подтолкнуть рост выбросов CO2 к самым быстрым темпам в течение многих лет.

Тем не менее, некоторые аналитики говорят, что использование угля в Китае может сократиться вдвое к 2030 г. Правительство вводит в действие национальную схему торговли выбросами, а также закрывает и ограничивает ввод новой угольной энергетики в ответ на загрязнение воздуха и климатические проблемы. Это означает, что конвейер строящихся или планируемых угольных ТЭС в 2017 г. сократился на 70% к 2016 г., сообщает CoalSwarm.

Это также означает, что запланированные проекты вряд ли получат разрешения, необходимые для их строительства, говорит Лаури Милливирта, энергетический аналитик Greenpeace в Восточной Азии. «Многие из запланированных проектов в Китае и Индии фактически мертвы. В Индии они коммерчески неликвидны, никто в здравом уме не собирается их строить… в Китае это не имеет смысла, поскольку там уже есть слишком много мощности, профицит». По данным Управления энергетической информации США (EIA), мощность и производство угля в Китае более или менее достигли своего пика.

Индия

Второе по величине увеличение мощности с 2000 г. произошло в Индии, где угольный энергетический флот увеличился более чем в три раза до 215 ГВт. В последнее время состояние индийской угольной генерации резко ухудшилось. МЭА сократило свой прогноз спроса на индийский уголь из-за замедления роста спроса на электроэнергию и удешевления возобновляемых источников энергии. Некоторые станции 10 ГВ признаны «нежизнеспособными», другие 30 ГВт испытывают «стресс», по словам министра энергетики Индии в интервью Bloomberg в мае 2018 г. Это потому, что «революция возобновляемых источников энергии в Индии толкает уголь с долгового обрыва», — пишет Мэтью Грей, аналитик Carbon Tracker.

Последний национальный план Индии в области электроэнергетики нацелен на выбытие 48 ГВт угольных ТЭС, отчасти из-за новых экологических норм. Он также предусматривает ввод 94 ГВт новых мощностей, но эту цифру ключевые аналитики мира считают нереальной. Страна запланировала ввод 44 ГВт проектов, из которых 17 ГВт были приостановлены на долгие годы. «В Индии возобновляемые источники энергии могут уже поставлять энергию по более низкой цене, чем новые и даже большинство существующих угольных ТЭС »,- говорят Лаури Милливирта, энергетический аналитик Greenpeace в Восточной Азии.

США

Волна выбытия старых мощностей сократила угольную генерацию США на 61 ГВт за шесть лет, и еще 58 ГВт планируется закрыть, отмечает Coal Swarm. Это уменьшит угольный флот США на две пятых, с 327 ГВт в 2000 г. до 220 ГВт в будущем или ниже.

Одним из способов сохранения отрасли являются заявленные планы администрации Трампа по спасению убыточных угольных электростанций по соображениям национальной безопасности с целью поддержания надежности системы с помощью доплат за мощность Bloomberg характеризует их как «беспрецедентное вмешательство в энергетические рынки США».

С другой стороны, рыночные условия в настоящее время благоприятствуют газовым электростанциям и возобновляемым источникам энергии. Новых угольных мощностей в США нет. Ожидается, что вывод угольных мощностей в 2018 г. составит 18 ГВт. В прошлом году потребление угля в энергетическом секторе США было самым низким с 1982 г.

Евросоюз

Учитывая планы ЕС по поэтапному отказу от угля, флот угольной генерации союза должен сократиться до 100 ГВт к 2030 г., то есть, наполовину от суммарной мощности 2000 г. Наряду с Канадой, страны ЕС возглавляют Альянс по поэтапному отказу от угля. Великобритания, Франция, Италия, Нидерланды, Португалия, Австрия, Ирландия, Дания, Швеция и Финляндия объявили о поэтапной ликвидации угольных ТЭС до 2030 г. Их мощности составляют 42 ГВт, включая недавно построенные ТЭС.

При этом четвертый и девятый по величине национальный угольный генерирующий флот в мире находится в государствах-членах ЕС, а именно 50 ГВт в Германии и 29 ГВт в Польше. Комиссия ЕС по установлению даты прекращения поставок электроэнергии из угля для Германии начала работать, хотя сетевой оператор страны говорит, что только половина угольного флота может быть закрыта к 2030 г. без ущерба для энергетической безопасности. Польша просто пообещала, что не будет строить новые угольные ТЭС сверх того, что уже строится.

Исследования МЭА показали, что все угольные ТЭС ЕС должны закрыться к 2030 г., чтобы достичь целей Парижского Соглашения. Рост цен на СО2, как ожидается, приведет к переходу от угля к газу уже в этом году, при условии подходящей цены и наличия газа.

Другие ключевые страны

Другие Азиатские страны, включая Южную Корею, Японию, Вьетнам, Индонезию, Бангладеш, Пакистан и Филиппины, коллективно удвоили свой угольный генерирующий флот с 2000 г., достигнув 185 ГВт в 2017 г. Суммарно эти страны самостоятельно построят 50 ГВт новых ТЭС и еще 128 ГВт запланированы за счет финансирования и участия в строительстве Китая, Японии и Южной Кореи.

Во многих из этих стран наблюдаются смешанные признаки использования угля. Например, последний проект Национального энергетического плана Японии учитывает значительную роль угля в 2030 г., в то время как Парижское Соглашение означает, что к тому времени Токио должен поэтапно отказаться от угля, отмечает Climate Analytics.

Вьетнам является третьей страной по запланированному объему угольной генерации — 46 ГВт, из которых 11 ГВт уже строится. «Тем не менее, правительство все больше инвестирует в изменение этой траектории», — пишет Алекс Перера, заместитель директора по энергетике в The World Resources Institute.- «Вьетнам обеспечивает интересное и важное сочетание условий, которые позволят перейти к чистой энергии: обязательства правительства по возобновляемым источникам энергии и частного сектора, стремящегося достичь все более строгих целей в области чистой энергии».

Правительство Индонезии запретило строительство новых угольных станций на наиболее густонаселенном острове Ява. Государственная коммунальная компания была подвергнута критике за «масштабное завышение прогноза роста спроса на электроэнергию» с целью оправдать планы по вводу новых угольных ТЭС.

Турция имеет значительные планы по расширению угольного флота. Однако в настоящее время строится только 1 ГВт из запланированного конвейера в 43 ГВт.

Другая страна с большими планами — Египет, у которого нет ни угольных станций, ни своих месторождений угля. Обратите внимание, что ни один из 15 ГВт запланированной новой мощности не вышел за пределы самой ранней стадии согласований, не получил никаких разрешений и не строится.

Южная Африка располагает крупными угольными месторождениями и седьмым по мощности угольным энергетическим флотом в мире. ЮАР строит 6 ГВт новых ТЭС и планирует ввести еще 6 ГВт. Однако после выборов Кирилла Рамафосы в начале этого года, политические настроения в стране меняются, и в апреле были подписаны долгосрочные сделки по строительству ВИЭ на сумму $4,7 млрд. Нетипично, что южноафриканская тяжелая промышленность отдает предпочтение возобновляемым источникам энергии в пику продолжающемуся развитию угольной генерации. Причина в том, что новые угольные станции будут дороже ВИЭ, — полагают эксперты. Законодательные дискуссии вокруг роли угля в новом плане инвестиций в энергетику Южной Африки пройдут позднее этим летом.