Лазерная указка. Типы лазерных указок

Лазеры

Урок объяснения нового материала, 2 ч. 11-й класс

Материал рассчитан на два урока, домашнее занятие и 3-й урок, на котором заслушивают подготовленные сообщения о применении лазеров. Структура и содержание урока должны служить не только расширению кругозора на основе полученных знаний по квантовой оптике, но и развивать умение думать, сопоставлять, обобщать, анализировать.

Ход урока

I. Название темы сегодняшнего урока записано по-английски. А что это означает по-русски? (Ответ. Лазер – английская аббревиатура названия.) Подберите к слову «лазерный» подходящие существительные. (Ответ. Шоу, оружие, принтер, указка, диск...) Ответы показывают, что вы знакомы с применением удивительного изобретения ХХ в. – лазера. Подтверждением его важности является присуждение в 1964 г. Нобелевской премии Н.Г.Басову, А.М.Прохорову и Ч.Таунсу «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера – лазера».

Перед вами лабораторный лазер и лазерные указки. Интересно, что же особенного в этих источниках света, как они устроены, ведь столь высокая оценка изобретения лазера, наверное, заслуженная?

II. В основе квантового усиления электромагнитных волн (ЭМВ) лежат два процесса: возбуждение индуцированного излучения и накапливание возбуждения.

Излучение вообще связано с переходом атомов (молекул) из возбуждённого состояния с энергией E m в стабильное состояние с более низкой энергией E n . Частота излучения при этом . В обычных источниках света число переходов E m E n равно числу переходов E n E m , излучение происходит в широком диапазоне частот, фазы волн, излучаемых отдельными атомами, произвольны. Такое излучение называется самопроизвольным , или спонтанным .

Если же искусственно создать перенаселённость верхних энергетических уровней E m , то, по догадке В.А.Фабриканта, внешнее излучение частотой mn , проходящее через такую активную среду, может быть усилено за счёт «спровоцированных» им переходов в среде E m E n . Такое вынужденное , или индуцированное , излучение отличается от спонтанного: направление распространения, поляризация, частота и фаза волн, излучаемых отдельными атомами, полностью тождественны внешней волне.

Создать стабильную перенаселённость уровней в двухуровневой системе долго не удавалось, т.к. переходы на нижний уровень происходили слишком быстро, через 10 –8 с. Более стабильной оказалась трёхуровневая система, когда электроны переходили сначала с верхнего уровня на средний (подуровень), причём этот переход не сопровождался излучением, задерживались на нём до 10 –3 с, а потом уже с излучением «сваливались» на нижний уровень. В рубиновых лазерах подуровень создаётся за счёт введения примесей хрома в кристалл оксида алюминия (рубина). Бывают и четырёхуровневые системы.

Уровень m _____________
________________Подуровень

Уровень n _____________

В квантовых генераторах между зеркалами, образующими так называемый резонатор Фабри–Перо , помещают активную среду. Проходя несколько раз от одного зеркала до другого, волна усиливается и частично выходит через полупрозрачное зеркало наружу. Как вы думаете, длина резонатора – путь между зеркалами – может быть любой? Оказывается, нет, должно выполняться условие резонанса: на длине резонатора должно укладываться целое число длин волн распространяющейся в резонаторе волны: 2L = n , где L – расстояние между зеркалами, – длина волны, n – целое число.

Это условие является важнейшим для генерации волны, оно и обеспечивает монохроматичность излучения. В лазере (квантовом генераторе) не могут возникать волны произвольной частоты. Генерируются волны лишь с дискретным набором частот:

Лазер, по существу, представляет собой автоколебательную систему, в которой возуждаются незатухающие колебания на одной из собственных частот резонатора.

III. Проверим, как вы поняли рассказанное, какие мысли, вопросы возникли у вас.

– Почему лазеры называют квантовыми источниками , ведь и в обычных источниках излучение возникает тоже вследствие переходов электронов с верхних энергетических уровней на нижние? (Ответ . Лазер – искусственный источник излучения, основными свойствами которого, отличающими его от естественных источников, являются монохроматичность и когерентность излучения.)

– Какие характеристики первичной волны, падающей на активную среду, изменяются в лазере? (Ответ . Интенсивность.)

– Назовите процесс, обратный процессу индуцированного излучения. (Ответ . Процесс возбуждения, которому соответствуют переходы электронов с нижних уровней энергии на верхние.)

– Назовите элементы лазера как автоколебательной системы. (Ответ . Резонаторы, активная среда.)

– Что в конструкции лазера определяет монохроматичность излучаемой волны? (Ответ . Расстояние между зеркалами.)

– В чём физика индуцированного излучения? (Ответ . Явление резонанса.)

IV. По полученной литературе за 3 минуты подготовьте сообщения в группах о работе рубинового, полупроводникового, газового, химического лазеров. При изложении придерживайтесь плана: способ получения трёхуровневых систем, способ возбуждения, особенности устройства и область применения. На листе ватмана начертите упрощённую схему.

V. Вы заслушали сообщения. Проверьте степень усвоения, ответив на вопросы:

– Что общего в работе разных типов лазеров? (Ответ . Разные виды энергии переходят в энергию оптического излучения.)

– Назовите режимы работы лазера. Чем обусловлен режим работы? (Ответ . Импульсный, непрерывный; обусловлен способом возбуждения и видом активной среды.)

– Назовите диапазоны волн, излучаемых квантовыми генераторами. Чем они обусловлены? (Ответ . Радиодиапазон – мазеры; рентгеновский, оптический, в том числе инфракрасный, – лазеры.)

– Есть ли предел усиления излучения? (Ответ . Да. Иначе сама система себя разрушит. Но использование многоканальных установок значительно расширяет этот предел.)

VI. На листе появляется запись: «Не смотри в лазер оставшимся глазом».

Смотреть прямо в лазер, даже слабомощный, не стоит – интенсивность света на сетчатке может оказаться в 10 4 раз выше, чем максимальная интенсивность солнечного луча. Если луч случайно «мазнул» по глазам, сфокусированным на каком-то другом предмете, то можно ослепнуть лишь на время, без необратимых повреждений глаза. Но искать границу между этими крайностями не стоит!

VII. Экспериментальное исследование особенностей излучения лазеров

1. Монохроматичность – электромагнитное излучение имеет одну, определённую и строго постоянную, частоту. Это обусловлено тем, что усиливаются только волны, удовлетворяющие условию резонанса. Однако соотношение неопределённостей E t h приводит к тому, что энергия возбуждённого состояния на уровне m может иметь значения между E m E и E m + E , поэтому и частоты, излучаемые лазером, будут отличаться на , причём .

где d = 1 мм – расстояние между штрихами, +3 и –3 – углы, под которыми наблюдаются максимумы +3-го и –3-го порядков, L = 1 м. Сделав преобразования, находим:

где h +3 и h –3 – высоты расположения соответствующих максимумов. Измерив h –3 = 10 см и h +3 = 14 см и подставив все числовые значения, получаем: = 730 нм. – Ред .]


Школьники готовятся к измерению длины волны лазерного излучения с помощью штангенциркуля

Для проверки проведём измерения со стандартной дифракционной решёткой с N = 600 штр./мм. Направив луч на неё перпендикулярно, получим:

Cогласно измерениям, L = 1 м, k = ±1, h +1 = 43,5 см = 0,435 м, h –1 = 45 см = 0,45 м. Тогда:


Измерение длины волны лазерного излучения с помощью обычной дифракционной решётки

2. Когерентность – согласованность во времени и пространстве нескольких колебательных или волновых процессов, что позволяет получить при их сложении чёткую интерференционную картину.

Времення когерентность отвечает за формирование интерференционной картины при делении луча на два. Чем шире спектр излучения, тем оно менее когерентно: Таким образом, монохроматичность связана с когерентностью.

Если направить луч лазера на экран или чёрную копировальную бумагу, то мы увидим, что он представляет собой не ровное пятно, как луч электрического фонаря, а узор из отдельных как бы пляшущих зёрен. Эта структура так и называется – зернистой , или гранулированной , или спеклом . Она создаётся параллельным пучком пространственно когерентного света, который диффузно рассеивается на тонкой структуре листа бумаги и объясняется интерференцией света, рассеиваемого отдельными шероховатостями, размеры которых сравнимы с длиной волны света. Пространственная когерентность означает, что фазы световых волн, излучаемых любой частью лазера, совпадают, что и обеспечивает устойчивость интерференционной картины.

Чёткость интерференционной картины определяется размерами области пространственной когерентности. В этом можно убедиться опытным путём, наблюдая интерференцию лучей, прошедших через два маленьких отверстия, как в опыте Юнга. Для этого мы наложили друг на друга две иголки с маленькими ушками и получили при освещении лазерной указкой чёткую интерференционную картину, что является доказательством пространственной когерентности лазерного луча.

3. Малая расходимость пучка. Благодаря слабой расходимости лазерный пучок виден, как точка на препятствии, даже удалённом на большое расстояние. Убедимся в этом на опыте. Лазерный луч, отразившись в зеркале, попадал на экран.

При L = 10 м (длина кабинета) и диаметре луча ( = 740 нм) при выходе из указки D = 3 мм диаметр луча при падении на зеркало составил D 1 = 6 мм и при падении на экран D 2 = 8 мм. Получилась расходимость луча примерно 2 мм на расстоянии 10 м.

Действительно, теоретически угол расходимости a определяется только диаметром пучка D и длиной волны :

На длине 10 м размер пучка должен увеличиться до 10 м 0,25 10 –3 = 2,5 10 –3 м = 2,5 мм. Луч карманного фонарика расходится значительно больше.

4. Мощность излучения. Лазеры являются самым мощным источником излучения: их мощность достигает 10 14 Вт/см 2 , в то время как мощность излучения Солнца 7 10 3 Вт/см 2 . Спектральная мощность излучения (приходящаяся на узкий интервал длин волн = 10 –6 см) составляет 0,2 Вт/см 2 у Солнца и у лазерной указки.

Измерим на нашей установке мощность излучения лазерной указки и сравним её с мощностью излучения электрической лампы.

Ток, потребляемый лампой, составляет 0,15 А при напряжении 3,6 В. Мощность лампы P 1 = 0,15 А 3,6 В = 0,54 Вт. Фототок, полученный при облучении фотоэлемента этой лампой, расположенной на расстоянии L = 10 см, составил 25 мкА.

Мощность светового потока лампы с учётом светоотдачи лампы (5%) и диаметра фотоэлемента (3 см) составляет всего:

Фототок от лазерной указки, расположенной на таком же расстоянии L = 10 см, составил 300 мкА.

Если светоотдача лазерной указки равна 0,6, то отношение фототоков:

следовательно, мощность излучения лазерной указки

VIII. Сегодня на уроке вы узнали (говорят ученики ): чем и почему лазерное излучение отличается от излучения других источников; как образуется это излучение. Осталось разобраться, как эти свойства используются в технических устройствах: медиатехнике, медицинских аппаратах, голографических средствах записи и воспроизведения изображений, оружии, термоядерных реакторах. Каждая группа дома готовит один вопрос и решает задачу.

Основными свойствами лазерного излучения являются: монохроматичность, пространственная и временная когерентность, направленность, высокая мощность и яркость.

Монохроматичность и поляризация .

Монохроматичность характеризует степень концентрации излучения по спектру. Количественной характеристикой степени монохроматичности является ширина спектральной линии на уровне 0,5 от ее максимума или спектральный диапазон , занимаемый группой линии.

Более объективной характеристикой является относительная ширина спектра
, где,- угловая частота и длина волны, соответствующие максимуму спектра.

Ширина спектральной моды, выделяемой резонатором, определяется его добротностью
. В свою очередь величинаопределяется потерями в резонаторе.

Теоретический предел ширины спектральной линии лазерного излучения определяется двумя факторами: 1) шумами, обусловленными тепловым излучением в резонаторе; 2) шумами, связанными со спонтанным излучением активного вещества. В оптическом диапазоне шумы за счет спонтанного излучения преобладаю над тепловыми шумами. Если учитывать только шумы, вызванные спонтанными переходами, то окажется, что спектральная линия выходного лазерного излучения имеет лоренцову формулу (см. п.1.7) с полушириной
, гдеР – выходная мощность лазерного излучения.

Для лазера с выходной мощностью Р = 1 мВт, излучающего в красной области спектра (λ 0 = 0,63 мкм) и имеющего добротность резонатора 10 8 , получаем
≈ 5∙10 -16 . Так как
, приL =1м допустимое отклонение длины резонатора составляет
= 5∙10 -7 нм. Очевидно, стабилизировать длину резонатора в таких пределах весьма проблематично. В реальных условиях монохроматическое лазерное излучение определяется изменениями длины резонатора, вызванными тепловыми эффектами, вибрациями и т.д.

Рассмотрим вопрос о поляризации лазерного излучения. Свет, у которого существует упорядоченность ориентации векторов напряженностей E и H , называется поляризованным . Лазер, вообще говоря, может генерировать неполяризованный свет, но это вредит стабильной работы лазера. Для обеспечения работы лазера на одной поляризации и получить на выходе плоскополяризованный свет, достаточно внутрь резонатора ввести потери для одной из двух поляризаций. Плоскополяризованным называется свет, у которого направления колебаний векторов E и H в любой точке пространства остаются неизменными во времени . В твердотельных лазерах для этого используется анизотропия оптических свойств активного вещества. Например, излучение рубинового лазера, как правило, поляризовано вследствие его двулучепреломления и несовпадения оптической оси кристалла с осью резонатора.

Когерентность характеризует согласованное протекание во времени и в пространстве двух или нескольких колебательных волновых процессов, появляющееся при их сложении.

В простейшем виде в оптике когерентность связана с постоянством разности фаз двух различных излучений или двух частей одного излучения . Интерференция двух излучений при их сложении может наблюдаться только, если они взаимно когерентны .

Для электромагнитной волны можно определить два независимых понятия - пространство и время когерентности.

Под пространственной когерентностью понимают корреляцию фаз электромагнитных волн, испущенных из двух различных точек источника в одинаковые моменты времени.

Под временной когерентностью понимают корреляцию фаз электромагнитных волн, испущенных из одной и той же точки.

Пространственная и временная когерентность – независимые параметры: один вид когерентности может существовать в отсутствии другого. Пространственная когерентность зависит от поперечной выходной моды лазера. Лазер непрерывного действия, работающий на одной поперечной моде, обладает почти идеальной пространственной когерентностью. Импульсный лазер в многомодовом режиме имеет ограниченную пространственную когерентность.

Временная когерентность непосредственно связана с монохроматичностью. Одночастотные (одномодовые) лазеры непрерывного действия имеют высокую степень временной когерентности.

Степень взаимной когерентности двух излучателей можно экспериментально определить по контрасту интерференционной картины

, (1)

и
- интенсивности в максимуме и минимуме нтерференционных полос.

Измерив интенсивности
и
вблизи выбранных точек экрана, можно определить функцию, характеризующую степень взаимной когерентности первого порядка.

. (2)

Для наблюдения только пространственной когерентности в точках х 1 и х 2
, т.е. производить измерения вблизи точки 0 (см. рис. 2.10). Для наблюдения только временной когерентности отверстиях 1 и х 2 должны быть расположены сколь угодно близко (совпадать), но для двух интерферирующих волн должна быть обеспечена задержка во времени на , например, путем разделения волны от отверстиях 1 на две части с помощью дополнительного полупрозрачного зеркала, как это делается в интерферометре Майкельсона.

Рис. 2.10. Измерение степени когерентности электромагнитной волны с помощью интерферометра Юнга.

Время когерентности равно 1/∆ ω , где ω – ширина линии в Гц. Время когерентности, помноженное на скорость света, представляет собой длину когерентности. Последняя характеризует глубину резкости в голографии и предельные дистанции, на которых возможны интерферометрические измерения.

Когерентность излучения имеет значение в тех применениях лазера, где происходит расщепление и последующее сложение составляющих лазерного пучка. К этим применениям относятся интерферометрическая лазерная дальнометрия, голография.

Если расположить источники оптического излучения в порядке уменьшения степени когерентности генерации ими излучения, то будем иметь: газовые лазеры – жидкостные - твердотельные лазеры на диэлектриках- полупроводниковые лазеры- газоразрядные лампы – светодиоды - лампы накаливания.

Направленность и яркость.

Направленностью излучения называют локализацию излучения вблизи одного направления, которое является осью распространения излучения. Лазерное излучение по своей природе обладает высокой степенью направленности. Для лазерного излучения коэффициент направленности может достигать 2000. Расходимость лазерного излучения ограничивается явлениями дифракции.

Направленность лазерного излучения характеризуется его расходимостью, которая определяется отношением длины волны генерируемого излучения к линейному размеру резонатора .

Излучение лазеров является когерентным и поэтому фронт волны представляет собой, как правило, почти плоскость или сферу с очень большим радиусом. Таким образом, лазер можно рассматривать как источник почти параллельных лучей с очень малой расходимостью. В принципе эта расходимость определяется дифракцией лучей на выходном отверстии. Угловая расходимость изл , определяемая дифракцией, оценивается выражением
, гдеd – диаметр отверстия или диаметр пучка в наиболее узкой его части.

Когерентное излучение лазера можно сфокусировать в пятно чрезвычайно малых размеров, где плотность энергии будет очень большой. Теоретическим пределом минимального размера лазерного пучка является длина волны. Для промышленных лазеров размеры сфокусированного светового пятна составляют 0,001-0,01 см. В настоящее время с помощью лазеров достигнуты мощности излучения 10 11 Вт/см 2 (плотность излучения Солнца составляет только 7∙10 3 Вт/см 2).

Высокая направленность лазерного излучения определяет и его высокую яркость. Яркость источника электромагнитной волны есть мощность излучения, испускаемого с единицы поверхности в единичном телесном угле в направлении, перпендикулярном излучательной поверхности.

Кроме энергетической яркости вводится понятие фотометрической яркости. Она служит для оценки эффективности воздействия света на глаз человека. Переход от энергетических величин к фотометрическим осуществляется через коэффициент
, зависящий от длины волны.

Этот коэффициент является световым эквивалентом потока излучения и называется спектральной световой эффективностью монохроматического излучения или видностью. Для нормального дневного зрения максимум функции видности приходится на длину волны = 555 нм (зеркальный свет). При=380 и 780 нм видность уменьшается почти до нуля.

Вы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру

А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.

Почему лазеры опасны
Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.

Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.

Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.

Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» - смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.

Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.

PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил;-)

650нм – красный
Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» - но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…

Покупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» - настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус - то что нужно для роботов, автоматики.

И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат - я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).

Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.

В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.

Вторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (~10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.

Самая простая схема с резистором описанная в предыдущей статье – лишь чуть-чуть проще, но с ней убить диод элементарно. Дело в том, что в таком случае ток/мощность через лазерный диод будет сильно зависеть от температуры. Если например при 20C у вас получился ток 50мА и диод не сгорает, а потом во время работы диод нагреется до 80С, ток возрастет (такие они коварные, эти полупроводники), и достигнув допустим 120мА диод начинает светить уже только черным светом. Т.е. такую схему все-таки можно использовать, если оставить по меньшей мере трех-четырехкратный запас по мощности.

И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) - любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.

А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко



532нм – зеленый
Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» - т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны - от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.

Основной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.

Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется - и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.

Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.

405нм – фиолетовый
Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться;-)
780нм – инфракрасный
Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.

Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки - 4-х или 6-и гранное вращающееся зеркало + оптика.

10мкм – инфракрасный, CO2
Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W - рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).
Применения лазеров
В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.

Из более серьёзного - целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен

Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый :-) (ну и 200мВт красный , если хочется жечь)

Вопросы/мнения/комментарии – в студию!

Теги:

  • лазер
  • dvd-rw
  • dealextreme
Добавить метки

Во многих интернет магазинах мощность портативных лазеров и лазерных указок неоправданно завышается в целях коммерческой выгоды. Рядовому покупателю достаточно сложно разобраться в этом вопросе и определить, насколько мощность приобретённого портативного лазера или лазерной указки соответствует действительности. В связи с этим мы предлагаем прочитать данную статью, в которой расскажем о том, какие бывают мощности у портативных лазеров и лазерных указкок, а также о том, как измеряется мощность в нашем интернет магазине.

Мощность портативных лазеров и лазерных указок

На данный момент наиболее мощными представителями портативных лазеров являются синие лазеры с длиной волны 445-450нм. Некоторые самостоятельно собранные модели при использовании нескольких лазерных диодов и сведения луча достигают мощности в 6,3Вт. Однако мощность у существующих отдельных лазерных диодов не превышает 3,5Вт. Важно отметить, что данные мощности были получены при аномально больших токах, на которые данные диоды не расчитаны. Максимальная выходная мощность , при которой синий портативный лазер будет работать стабильно на данный момент не превышает 2000мВт (2000 милливатт = 2Вт, 2000mW).

Следующие по мощности идут красные (650-660нм) и фиолетовые (405нм) портативные лазеры. Их мощность не превышает 1000мВт .

Наконец, наиболее популярные и яркие зелёные (532нм) лазеры имеют максимальную мощность 750мВт . Важно отметить, что зелёные лазеры по принципу действия отличаются от синих и красных: зелёные 532нм лазеры - полупроводниковые лазеры с диодной накачкой. Поэтому, мощность зелёного лазера складывается из трёх компонент: инфракрасной 808нм (лазерный диод накачки), 1064нм (лазерное излучение алюмо-иттриевого граната, («YAG», Y 3 Al 5 O 12) легированного ионами неодима (Nd)) и 532нм (зелёный лазерный свет после удвоения частоты в кристалле KTP). Чтобы на выходе получить 750мВт мощности зелёного 532нм лазера нужно более 5Вт мощности 808нм диода накачки! Проверяя мощность зелёного лазера с помощью ваттметра необходимо удостовериться, что у него есть фильтр, способный отсечь инфракрасные длины волн. В противном случае ваттметр покажет суммарную мощность лазера (из которых лишь 10-15% приходится на 532нм).

Об измерении мощности в интернет-магазине LaserMag

В нашем интернет магазине имеется уникальная возможность проверять оптическую мощность портативных лазеров и лазерных указок благодаря специальному оптическому ваттметру.

Принцип его работы основан на термоэлементе, который поглощает лазерное излучение и формирует электрический сигнал. Электрический сигнал попадает в ЦАП (цифро-аналоговый преобразователь). Далее, с помощью специальной программы, поставляемой с оптическим ваттметром на экран компьютера выводится динамическая характеристика мощности (зависимость мощности от времени). При желании клиента мы готовы предоставить график мощности любого приобретаемого лазера.


Миф 3. "Энергетика" лазерного оружия ничтожна о сравнению с огнестрельным. "Для сравнения: мощность 76-мм дивизионной пушки Ф-22 образца 1936 года- порядка 150 мегаватт. В 150 раз больше (чем у ABL)!.. Это еще мы не учитываем энергию ВВ в самом снаряде. Там еще столько же. Вдумайтесь в этот простейший факт: маленькая древняя пушка времен ВОВ по цене металлолома в сотни раз мощнее ультрасовременного "боевого" лазера весом десятки тонн и стоимостью свыше $5 млрд. Один только выстрел из ABL стоит миллионы долларов. И этот выстрел по энергетике сравним с очередью крупнокалиберного пулемета".

Сравнение мощности, развиваемой в течение 0,01 сек, с мощностью постоянного излучения, и с помощью этого сравнения - "доказывание" неполноценности более "долгоиграющего" оружия противоречит даже курсу школьной физики. Попробуем провести сравнение корректным способом - подсчитав энергию, отправляющуюся к цели.


Вот как? А подсчет количества энергии без учета того, за какое время эта энергия передается цели, значит, не противоречит школьному курсу физики? Интересно, где Пожидаев физику учил.
Я вроде уж куда проще разъяснил, почему лучше сравнивать именно через мощность, то есть энергию деленную на время. Придется еще раз.

Через энергию конечно тоже можно посчитать, но если делать это действительно корректным способом, то это будет на порядок сложнее, требует учета разных факторов и оговорок - ведь тогда нужно считать эффективную энергию луча , ту ее часть которая непосредственно потратится на разрушение цели.

Нельзя тупо брать всю энергию лазера оптом, что отправили в направлении цели, это сугубо некорректно.
Ведь луч лазера принципиально отличается от кинетического оружия тем, что, будучи маломощным средством поражения, может значительно отражаться от нее и ему требуется на порядки больше времени воздействовать на цель, чем снаряду. По сути, лазер десятки секунд греет некое пятно на цели. При этом тепло (энергия) из этого пятна:
безвредно тратится на нагрев окружающего воздуха,
безвредно уходит в окружающую среду в виде инфракрасного излучения,
безвредно распространяется за счет теплопроводности по телу мишени (если стенки металлические и особенно если мишень движется).

И только очень маленькая доля энергии луча, (хорошо если 1-2%) действительно разрушает (размягчает, плавит, испаряет, сжигает) материал цели. В случае же снаряда обычно бОльшая часть его энергии (с учетом энергии взрывчатки) тратится именно на поражение цели.

Вот что об этом можно прочитать в материалах инженерного симпозиума 2012 года по морским боевым системам, доклад Dr. Phillip Sprangle по боевым морским лазерам):

Laser Lethality

Thermally ablating 1/4 pound of target material requires ~ 1.3 MJ of laser energy

1 MJ is equivalent to ~ 1/2 pound of explosive

For an engagement time of 5 sec the required laser power is > 250kW

100 kW of absorbed laser power for 2 sec ablates ~ 20 grams (~ 8 pennies)

Итак, данный инженер докладывает что 100 квт поглощенной мощности за 2 секунды испарит на цели 20 грамм вещества. Что эквивалентно около 40 граммам взрывчатки. Особо подчеркивается что речь идет не о выходной мощности луча, а той что полностью поглотится материалом. А вот какая излучаемая мощность нужна, чтоб столько энергии поглотилось на цели, он скромно умолчал. Очевидно потому что циферки совсем недостижимые выйдут.

Если же кто-то полагает что снаряд там или пуля тоже растрачивает много энергии впустую на преодоление сопротивления воздуха, то у лазера с этим все гораздо хуже (см. ниже).

Есть еще большая проблема, если считать по энергии, а не мощности: когда мы считаем отправляемую энергию пушкой - какую скорострельность брать? Там ведь разница в несколько порядков бывает.
Но наш разоблачитель не только великий физик, он еще и спец по огнестрельному оружию!
Он-то знает какую скорострельность взять:

Дульная энергия 12,7 мм крупнокалиберного пулемета НСВ 15-17,5 кдж, при боевой скорострельности 80-100 выстрелов в минуту . Иными словами, даже 100 квт лазер - это "три с половиной" крупнокалиберных пулемета (6000 кдж/мин против 1750)

Вот это просто прекрасно - он взял боевую скорострельность "Утеса". Т.е. скорострельность с учетом перерывов на прицеливание/перезарядку/охлаждение.
А для лазера-то он эти перерывы не учел, взял мгновенную мощность, в импульсе.
Очередное сравнение пальца с жопой.
Если брать 100 кВт (т.е пиковую мощность) для лазера, то для пулемета нужно брать техническую (пиковую) скорострельность в моменте. Которая для "Утеса" составляет 700-800 выстр/мин.
И тогда получим 13000 кДж/мин у пулемета против 6000 кДж/мин у 100 квт лазера. И это еще скромненько.

Можно ведь взять какой-нить скорострел с вращающимся блоком стволов и темпом 6000 выстр/мин.
И получить отправляемую им энергию более 100 тыс кДж/мин. На два порядка больше чем у лазера!
Так что в данном случае лазер курит в стороне, как ни считай - хоть по мощности, хоть по выходной энергии.
При несопоставимо бОльших размерах. Помним, что представляет из себя твердотельный лазер на 100 кВт?

Вернемся, однако, к пушке. Дульная энергия Ф-22 - 1,35 МДж, в то время как мощность ABL - 1,1 МВт, т.е. 1,1 МДж ЕЖЕСЕКУНДНО. Таким образом, в минуту лазер выбрасывает 48 "снарядов". Переведя мегаватт в тротил, мы получим 240 г взрывчатки в секунду и 14,4 кг в минуту, что эквивалентно содержимому 18 осколочно-фугасных снарядов от все той же пушки.

Однако еще лучше вернуться к пониманию того, что вот эти все расчеты с энергетикой были изначально затеяны, чтобы сравнить поражающую способность лазера данной мощности со ствольной артиллерией (или стрелковкой).
Я об этом несколько раз написал, но у Пожидаева не отложилось. Вместо этого он подменил мои прикидки своими, совершенно не понимая их физического смысла. Взял формулы какие ему взбрелись, подставил тупо циферки и получил сущий бред - будто бы минутный "выстрел" лазера ABL эквивалентен по эффекту обстрелу цели 50-тью снарядами 76-мм пушкой.
В то время как он не мог не видеть ролик, который я привел, где наглядно показано воздействие этого мегаваттного ABL на ракету:

Тут лазер светит секунд 20? То есть по "энергетическим" расчетам Пожидаева выходит, что лазер "выбросил 16 снарядов Ф-22", и ракета-мишень выдержала аж 15 попаданий из 76-мм ПУШКИ и на 16-ом чего-то там от нее отлетело.
Это чудо имеет два объяснения:
то ли ракета-мишень была бронирована как немецкий танк "Тигр",
то ли энергетические расчеты нашего "физика" являются бреднями, вызванными глобальным непониманием того, что эти расчеты служат для оценки эффекта воздействия на цель, а не тупого жонглирования цифрами из желания поспорить, а также непониманием того, что нельзя выходную энергию лазера путать с поглощаемой энергией на цели.

Вывод очевиден, кмк..

Замечу, что я еще скромненько так посчитал мощность пушки, взяв за основу мощность самого выстрела, в то время как время воздействия снаряда на цель зачастую бывает намного меньше, чем время разгона в стволе, а значит мощность поражения цели будет еще больше. Никакой лазер даже близко не сравнится.

Может быть еще такое возражение что пушка на той дистанции, что поражает лазер - либо не попадет, либо не долетит.
Да какие проблемы? Возьмите авиационную управляемую ракету, или зенитную. Они тоже входят в понятие обычного оружия и тоже превосходят лазеры по всем статьям.

Однако фактическая "ценность" лазера выше. Дело в том, что даже при прицельной стрельбе из огнестрельного оружия основная часть "энергии" достается не врагу, а окрестному ландшафту. Виной тому - добрый десяток факторов (ветер, колебания влажности, давления и температуры воздуха, сила Кориолиса и т.д.), обеспечивающих пуле/снаряду неизбежное рассеивание. А поток фотонов летит ровно туда, куда его направили - исключая массу непроизводительных потерь

Во-первых, здесь как видно Пожидаев забыл об управляемом оружии, которому вовсе не приходится поражать окрестный ландшафт.

Во-вторых, совсем плохая новость для него - и ветер, и влажность, и пыль и даже просто воздух влияют на энергию лазерного луча гораздо фатальнее, чем на пули/снаряды.

Что характерно, эту тяжелейшую проблему лазерного оружия он полностью проигнорировал в своем мифоборчестве. Такой вот дотошный опровергатель: тут читаем, тут не читаем, а тут мы рыбу заворачивали.
Я правда тоже ранее лишь обозначил ее, в общих словах.

Теперь видимо пора раскрыть этот вопрос подробнее и с цифрами, учитывая что он лишь один, сам по себе, делает невозможным создать эффективное лазерное оружие в условиях атмосферы и реального боя.

Для этого я воспользуюсь соответствующим научным исследованием от Naval Research Laboratory, о распространении высокоэнергетических лазерных лучей в различных условиях (Propagation of High Energy Laser

Beams in Various Environments). (спасибо за наводку френду sergeyvz )
Рассмотрим несколько интересных графиков оттуда:








На этих графиках показано как зависит мощность луча, дошедшая до цели на расстоянии 5 километров, от излучаемой мощности, для разных длин волн и разных условий в атмосфере (город, море, пустыня и "село").
Нас интересует тут длина волны 1.045 мкм (темно-синяя кривая), это очень близко к излучению перспективных твердотельных лазеров (1.06 у JHPSSL).
Во-первых, оказывается что в городском воздухе (при видимости 10 км) есть порог в 30 квт, то есть больше мощности до цели просто не дойдет, какую бы мощность мы не излучали, хоть несколько мегаватт.
Все остальное поглотит/рассеет городская пыль.
То есть в городе, в его "чистом" воздухе боевые лазеры практически неприменимы.
За городом, в сельской местности - порог около 400 квт, тоже немного.
При этом излучаемая мощность должна быть около 1.3 Мвт - остальное рассеется по пути.

Откуда берется этот порог? Дело в том что содержащийся в воздухе аэрозоль из твердых частиц приводит к крайне неприятному для лазерщиков явлению - тепловому размытию луча (thermal blooming).
Механизм такой - начиная с определенной мощности лазер так нагревает твердые частицы, что они разлагаются/испаряются и интенсивнее греют воздух, воздух расширяется и начинает работать для луча как расфокусирующая, рассеивающая линза.
Дальнейшее повышение мощности луча лишь приводит к увеличению доли "размытой энергии".

В пустыне и море дело обстоит получше, порога там нет для лазера с длиной волны 1.06, но потери все равно очень велики - на 5 километрах теряется от 70 до 50% энергии луча, соответсвенно. Отсюда понятно, почему американцы так любят демонстрировать свои лазеры на полигоне в пустыне (White Sands) и на море.

Для сравнения, снаряд пушки хоть и потеряет на дистанции в 5 км 70% своей кинетической энергии из-за торможения, но энергия взрывчатки в нем по пути никак не уменьшится. С лазером же такое невозможно.

Надо также понимать, что здесь не рассмотрены осадки, туман или какие-то загрязнения воздуха. В этих ситуациях луч уже ослабляется в несколько раз, и вплоть до полного непрохождения, что сводит применение лазерного оружия лишь к случаям хорошей погоды и в отсутствии дымовой завесы или пыли и дыма от взрывов.

Так что это как раз снаряд летит куда его направили, и честно доносит свой тротил до цели, а "фотоны лазерного луча" по пути греют воздух, воду, пыль, летят большей частью куда угодно, но не к цели.

Миф 4 . КПД лазеров — единицы процентов .

Фактически он у боевых лазеров до 20,6%, и это не предел. В рамках программы RELI КПД намечено поднять до 25%. Волоконные лазеры, которые приспособила к военному делу Raytheon, уже сейчас имеют КПД около 30%. У огнестрельного оружия — 20-40%.


Конкретно наша древняя 76-мм пушка имеет КПД около 35%.
Современные танковые гладкостволки - более 40%.
Волоконные лазеры действительно могут иметь КПД до 30%, но они крайне маломощные, даже 100 квтный лазер приходится набирать из многих модулей. Но самая главная проблема не просто в малом КПД, а в том, что сама форма образования побочной энергии в лазерном оружии в виде тепла крайне неблагоприятна для его применения.
Я уже приводил выше пример с пистолетом.

Миф 5 . Лазерный луч имеет огромную дифракционную расходимость .

"Здесь вступает в силу непреодолимый физически закон дифракции, который гласит - излучение лазера всегда расходится с углом = длина волны/диаметр пучка. Если мы возьмем конкретно боевой инфракрасный лазер с длиной волны 2 мкм (на такой длине работают боевые лазеры THEL и т.п.) и диаметр пучка 1 см, то мы получим угол расхождения 0.2 миллирадиана (это очень маленькое расхождение - например, обычные лазерные указки/дальномеры расходятся на 5 миллирадиан и больше). Расхождение 0.2 мрад. на дистанции 100 метров увеличит диаметр пятна с 1 см до примерно 3 см (если кто еще помнит школьную геометрию). То есть плотность воздействия упадет пропорционально площади в 7 раз всего лишь на 100 метрах. А на километре плотность луча упадет уже в 300 раз".

На самом деле боевой лазер, излучающий пучок исходным диаметром 1 см - это примерно то же, что и маленькие зелёные человечки… т.е. плод нездоровой фантазии, не отягощённой хотя бы минимальными знаниями.

Вот это мне больше всего нравится.
Дело в том, что если какие лазеры и использовались реально в качестве средства поражения на поле боя, то вот именно с таким (или даже меньшим) пучком. Просто товарищ Пожидаев сам не отягощен даже минимальными знаниями об этом. Речь о так называемых даззлерах (ослепляющих лазерах). Естественно, их быстро расходящийся пучок не был препятствием, поскольку для ослепления хватало и этого.

В действительности, при использовании фокусирующей оптики дифракционная расходимость равна примерно λ/D, где лямбда - длина волны, а D - диаметр зеркала (он же - исходный диаметр пучка, постепенно сужающегося к цели из-за фокусировки; большая стартовая "толщина" обеспечивает низкую дифракционную расходимость).

В случае с ABL длина волны равна 1,315 мкм, а диаметр зеркала — 1,5 м, поделив одно на другое, получаем расходимость около 10 в минус 6-й степени радиан. Иными словами, луч лазерного "Боинга" "расплывется" на километровом расстоянии всего на… 1 миллиметр. На расстоянии 200 км, дифракционная расходимость составит 20 см. Фактическая расходимость луча ABL превышает дифракционный предел всего в 1,2 раза.

В случае с реальным применением оружия на поле боя никаких зеркал диаметром ни 1.5 метра, ни 50 см и сложнейших систем фокусирующей оптики использовать нельзя. Иначе получаются не боевые лазеры, а полигонные дурилки, исключительно для демонстрации их в идеальных условиях. Если мы хотим иметь что-то вроде лазерного пулемета - то оно по размерам должно быть примерно как пулемет и не бояться ударов, вибрации, грязи и и т.п. Поэтому все идеи с попыткой обойти дифракционную расходимость за счет оптических ухищрений сразу прогорают - пучок должен быть изначально тонким.

Впрочем, в тех узких нишах применения, когда все же можно использовать прецизионное большое зеркало, как в случае с противоракетным лазерным Боингом (ABL), уход от проблемы с дифракцией привел к другому комическому эффекту - этот лазер получился с фиксированным фокусным расстоянием, потому что фокусирующее зеркало его не может менять кривизну в принципе. Это керамический монолит толщиной 30 см, его целый год шлифуют/полируют!
Соответственно, ABL мог поражать цели только в определенном узком диапазоне, в котором сфокусирован луч до размера баскетбольного мяча. Взлети ракета в нескольких километрах от самолета - на этой дистанции он бы имел слишком толстый, 1.5 метровый в диаметре луч, и был бы скорей всего бессилен. Во всяком случае, испытаний на близких дистанциях не демонстрировали почему-то. А было б забавно.

Миф 6 . От лазерного оружия можно легко защититься - например, алюминиевым зеркалом.

Действительно, металлы могут иметь феерические коэффициенты отражения. Однако, во-первых, эти коэффициенты - в значительной мере "бумажные". Реальная ракета после старта будет иметь повреждения и загрязнения.

О как? Оказывается реальные боевые ракеты в мире пожидаевских фантазий от кончика до хвоста сплошь покрыты грязью и царапинами. Ведь лазер не будет выискивать чистые места, попадет куда придется. И надо чтоб там непременно были грязь и повреждения, а то лазерщики опростоволосятся.

Во-вторых, коэффициенты отражения металлов в ближнем инфракрасном диапазоне, как правило, весьма средние - а именно там и работают современные боевые лазеры. Скажем, алюминий, у которого одни из лучших показателей, имеет громадный коэффициент отражения в ИК-диапазоне. Однако на волне в 1 мкм, коэффициент отражения падает до 75%. Между тем, современные "гиперболоиды" излучают именно в "окрестностях" 1 мкм (ABL - 1,315 мкм). При этом 25% от сотен киловатт с лихвой хватит, чтобы разогреть и подплавить тонкий верхний слой обшивки, на чем отражение и закончится — поглощение лазерного излучения быстро растет вместе с ростом температуры, и резко подскакивает после начала плавления.

Ок, смотрим какие на самом деле коэффициенты отражения у металлов в ближнем ИК-диапазоне.


Здесь первая прерывистая линия (Nd:YAG) в районе 1 мкм как раз соответсвует излучению наших боевых твердотельных лазеров.

Оказывается, алюминий поглощает лишь около 7% этого излучения, то есть отражает 93% а не 75%.
А если сделать медное, серебряное или золотое напыление - то отразится до 97-99%.
Кстати, титан отражает тоже около 95%. "Весьма средние коэффициенты", ага.
И что самое обидное, Нагрев металла увеличивает коэффициент поглощения. Однако это не распространяется на не содержащие железо металлы с высокой отражательной способностью, такие как медь и алюминий, потому что эти металлы объединяют в себе высокую отражательную способность и высокую теплопроводность, которые снижают эффективность лазерной резки. Так что у ракеты не получится "подплавить и закончить отражение", как придумал Пожидаев.

А как же "детский" вопрос - "если лазерный луч можно фокусировать и наводить зеркалом, то почему зеркалом нельзя защититься"? В самих лазерах используются, как правило, многослойные диэлектрические зеркала, способные отражать очень много - но в крайне узком диапазоне и только под строго определенными углами. Кроме того, они охлаждаемые - а со всей поверхностью цели это проделать, как правило, невозможно.


Как видно по коэффициентам, достаточно тонкого напыления чтоб организовать более чем эффективное ИК-зеркало, которое вовсе не нужно как-то специально охлаждать - можно просто закрутить ракету.
Иными словами, простой, эффективной и дешевой защиты от мощных лазеров не существует.

Заявил наш смелый разоблачитель, в очередной раз проигнорировав предложенную мной простейшую и эффективнейшую на 100% защиту - абляционную смолу. Которой защищают спускаемые космические аппараты и боеголовки МБР.
И которая при испарении может отвести гигантские потоки внешнего тепла.

Миф 7. Проблема перегрева для лазеров нерешаема . "На каждый мегаватт энергии генерируется 4 мегаватта тепла, которые способны раскалить самолет докрасна и спалить дотла. Система охлаждения со скоростью газового потока 1800 м/сек (сопло Лаваля) оказалась не способна выдуть все вырабатываемое тепло из фюзеляжа".

В реальности "утилизация" количеств тепла в единицы мегаватт сама по себе достаточно тривиальна. Кто-нибудь видел "раскалившийся докрасна" тепловоз? Между тем, приличный дизель мощностью в пару мегаватт сбрасывает маслу и системе охлаждения более мегаватта тепла. Куда менее проста задача вывода тепла из ограниченного объема собственно "орудия". В случае с химическим лазером ABL разогретые продукты реакции просто выдуваются из резонатора (пресловутым соплом Лаваля), а далее для охлаждения используется жидкий аммиак. Достаточно громоздкая система с проблемными криогенными компонентами — однако она действительно способна "утилизировать" очень внушительные количества тепла.

Эта проблема на самом деле решена более менее лишь для химических, газовых лазеров с открытым контуром - они тупо сбрасывают раскаленные токсичные газы в окружающую среду. Но у нас прогресс кажется пришел к твердотельным лазерам? Вот там все гораздо хуже.

Тактические твердотельные лазеры, которым предстоит избавляться от 400 квт тепла, вполне обходятся без криогенных "холодильников". Так, HELLADS — это продукт "скрещивания" нормального твердотельника и лазера с жидким рабочим телом; циркуляция последнего и выводит избыточное тепло за пределы "пушки". Примечателен и свежий продукт General Atomic — аккумулятор тепловой энергии, специально созданный для охлаждения лазеров. Модуль весом 35 кг способен поглотить 230 кВт — тепло расплавляет энергоемкий материал, похожий на воск. В итоге режим HELLADS - до двух минут непрерывного излучения с последующим тридцатисекундным перерывом.

Нет на сегодня такого HELLADS. Не создан еще такой тактический лазер даже в виде экспериментального образца.
Сегодняшнее состояние этого проекта таково : создан и испытан некий первичный модуль на 34 кВт (еще в 2011ом году), и теперь нужно нарастить мощность до 150 кВт. Причем это планировали сделать к концу 2012 года, но до сих пор молчок. Никаких новостей. На сайте General Atomics тоже тишина , сплошные обещания, из которых следует что лазер на 150 кВт не создан до сих пор. Похоже не выходит каменный цветок.
Что касается теплового аккумулятора, то последняя новость о нем была от 2010 года , и там приведена его емкость - 3 Мдж. Это означает что он сможет обеспечить лишь 5 секунд охлаждения 150 кВт лазера. Так что тут вместо фактов какой-то опять незамутненный поток пожидаевских фантазий.

Миф 8. Мощных и компактных источников энергии для боевых лазеров не существует .

Отчасти это действительно так - 100 квт твердотельный лазер пока не представляется возможным взгромоздить на что-либо меньшее, чем грузовик из-за необходимости иметь под рукой генератор на 500 квт и конденсаторы соответствующей мощности. Таковы реальные масштабы проблемы - не имеющие ничего общего с фантазиями по поводу "атомных реакторов". На практике гибридный вариант грузовика HEMTT — HEMTT А3 даже в базовой комплектации имеет электрогенератор на 350 киловатт, способный обеспечить до 200 квт "экспортируемой" энергии. При повышении мощности двигателя до 505 л.с. A3 может обеспечить "внешнему" потребителю 400 кВт. Приятным дополнением является батарея конденсаторов на 1,5 мегаджоуля. Иными словами, там, где обитателям блогосферы мерещатся электростанции - на самом деле маячит один грузовик, хотя и довольно высокотехнологичный

Каковы реальные масштабы проблемы и как заблуждается Пожидаев насчет помещения 100 кВт лазера на высокотехнологичный грузовик - я уже показал выше.

Миф 9. Каждый выстрел лазера стоит миллионы .

В действительности один выстрел ABL стоит $10 тыс.; отечественные "16 миллионов" — пропагандистское… преувеличение. Это примерная стоимость незатейливой носимой ПТУР вроде "Фагота". Более серьезные противотанковые ракеты стоят десятки тысяч долларов, Maverick (ракета воздух-поверхность с дальностью в 28 км) - $154 тыс., одна ракета к "Patriot" — $3,8 млн. Стоимость выстрела тактических лазеров еще меньше, чем у ABL — даже у фторводородного THEL она составляла $2-3 тыс., при том, что фактически этот лазер использовал не водород, а достаточно дорогой дейтерий.

Стоимость одного часа использования лазерного Боинга предполагалась выше 92 000 долларов.
Всего он мог делать 4-6 выстрелов и патрулировать должен быть десятки часов.
Отсюда, по самой минимальной оценке стоимость его выстрела получается порядка сотен тысяч долларов.

Миф 10. Все задачи, которые могут быть решены лазерным оружием, легче и дешевле решаются традиционными средствами .

Эта теория уже доказала свою несостоятельность. Пример — попытки Израиля защититься от ракетных атак ХАМАС с помощью противоракет (система Iron Dome). Один пуск противоракеты обходится в $30- 40 тыс. Стоимость ракеты для "Града" составляет порядка $1 тыс., стоимость "Кассамов" не превышает $200. Таким образом, перехват будет обходиться в 40-200 раз дороже, чем само средство нападения. Как заметил по этому поводу представитель ХАМАС Тарик Абу Назар, "если каждый удар наших ракетчиков будет стоить израильтянам десятки тысяч долларов, мы будем считать, что цель достигнута". В итоге отдельные злобные газетчики обвиняют в "распиле" не разработчиков лазеров, а тех, кто закрыл соответствующую израильско-американскую программу. Ограниченно применимой - из-за малого радиуса действия и огромного расхода боеприпасов — оказалась и система Centurion.

История израильской борьбы с ракетными атаками доказала ровно обратное.
Как общеизвестно, изначально для этого разрабатывали лазерную установку THEL.
Израиль потратил большие деньги, но все кончилось ничем - система была очевидно небоеспособна и проект закрыли.
Ее неустранимые недостатки были очевидны с самого начала участникам проекта , начиная с того что люди буквально сидели на цистернах с крайне токсичными компонентами, что привело бы к катастрофе при попадании в установку копеечной ракеты, заканчивая ее неспособностью поражать цели при плохой погоде.

В итоге израильтяне пришли к старым добрым зенитным ракетам, системе Iron Dome и теперь массово их используют.
Видимо считают что ущерб от попадания палестинских ракет в населенные пункты, от гибели гражданских все же выше стоимости противоракет.

Разумеется, это далеко не полный список легенд о лазерах. Большинство из них построено по тому же принципу — либо сознательная ложь, либо старательное превращение мухи в слона. На самом деле лазеры на поле боя - реальны, а армия, которая сможет обзавестись ими, получит внушительное преимущество.

Сказал фанат лазеров, построив буквально каждое свое мифоразоблачение на сознательной лжи, нелепых выдумках и передергиваниях.

Так что реальна лишь потрясающая техническая безграмотность бескорыстных поборников лазерного оружия и безграничные аппетиты и фуфлогонство его разработчиков.

Поэтому как и , эту тему с лазерным оружием прекрасно можно использовать в качестве лакмуса для выявления безграмотных военных экспердов и прочих журнализдов.