Площадь многоугольной фигуры. Как найти площадь многоугольника

В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.

Формула площади многоугольника через радиус вписанной окружности


Нарисуем многоугольник A 1 A 2 A 3 A 4 A 5 , не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O :

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH 1 , OH 2 , OH 3 , OH 4 и OH 5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

Рассмотрим, чему равна площадь треугольника . На рисунке снизу он выделен жёлтым цветом:

Она равна половине произведения основания A 1 A 2 на высоту OH 1 , проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: , где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

Видно, что во всех слагаемых этой суммы ест общий множитель , который можно вынести за скобки. В результате получится вот такое выражение:

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P . Чаще всего в этой формуле выражение заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Материал подготовил , Сергей Валерьевич

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Решения многих задач вычислительной геометрии основывается на нахождении площади многоугольника . На этом уроке мы выведем формулу для вычисления площади многоугольника через координаты его вершин, напишем функцию для вычисления этой площади.

Задача. Вычислить площадь многоугольника , заданного координатами своих вершин, в порядке их обхода по часовой стрелке.

Сведения из вычислительной геометрии

Для вывода формулы площади многоугольника нам понадобятся сведения из вычислительной геометрии, а именно, понятие ориентированной площади треугольника.

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами и . То есть ее знак зависит от порядка перечисления вершин.

На рис. 1 треугольник АВС – прямоугольный. Его ориентированная площадь равна (она больше нуля, так как пара , ориентирована положительно). Эту же величину можно вычислить другим способом.

Пусть О – произвольная точка плоскости. На нашем рисунке площадь треугольника ABC получится, если из площади треугольника OBC вычесть площади OAB и OCA. Таким образом, нужно просто сложить ориентированные площади треугольников OAB, OBC и OCA. Это правило работает при любом выборе точки О .

Точно так же для вычисления площади любого многоугольника нужно сложить ориентированные площади треугольников

В сумме получится площадь многоугольника, взятая со знаком плюс, если при обходе ломаной многоугольника находится слева (обход границы против часовой стрелки), и со знаком минус, если он находится справа (обход по часовой стрелке).

Итак, вычисление площади многоугольника свелось к нахождению площади треугольника. Посмотрим, как выразить ее в координатах.

Векторное произведение двух векторов на плоскости есть площадь параллелограмма, построенного на этих векторах.

Векторное произведение, выраженное через координаты векторов:

Площадь треугольника будет равна половине этой площади:

В качестве точки О удобно взять начало координат, тогда координаты векторов, на основании которых вычисляются ориентированные площади, совпадут с координатами точек.

Пусть (х 1 , y 1), (x 2 , у 2), …, (х N ,у N) - координаты вершин заданного многоугольника в порядке обхода по или против часовой стрелки. Тогда его ориентированная площадь S будет равна:

Это и есть наша рабочая формула, она используется в нашей программе.

Если координаты вершин были заданы в порядке обхода против часовой стрелки, то число S, вычисленное по этой формуле, получится положительным. В противном случае оно будет отрицательным, и для получения обычной геометрической площади нам необхо­димо взять его абсолютное значение.

Итак, рассмотрим программу для нахождения площади многоугольника, заданного координатами вершин.

Program geom6; Const n_max=200; {максимальное количество точек+1} type b=record x,y:real; end; myArray= array of b; var input:text; A:myArray; s:real; i,n:integer; procedure ZapMas(var n:integer; var A:myArray); {Заполнение массива } begin assign(input,"input.pas"); reset(input); readln(input, n); for i:=1 to n do read(input, a[i].x,a[i].y); close(input); end; function Square (A:myarray): real; {Вычисление площади многоугольника} var i:integer; S: real; begin a.x:=a.x; a.y:=a.y; s:=0; for i:=1 to n do s:= s + (a[i].x*a.y - a[i].y*a.x); s:=abs(s/2); Square:= S end; {Square} begin {main} Zapmas(n, a); PrintMas(a); S:= Square(a); writeln("S= ",s:6:2); end.

Координаты вершин считывается из файла input.pas., хранятся в массиве А в виде записей с двумя полями. Для удобства обхода многоугольника в массиве вводится n+1 элемент, значение которого равно значению первого элемента массива.

1.1 Вычисление площадей в древности

1.2 Различные подходы к изучению понятий «площадь», «многоугольник», «площадь многоугольника»

1.2.1 Понятие о площади. Свойства площади

1.2.2 Понятие о многоугольнике

1.2.3 Понятие о площади многоугольника. Дескриптивное определение

1.3 Различные формулы площадей многоугольников

1.4 Вывод формул площадей многоугольников

1.4.1 Площадь треугольника. Формула Герона

1.4.2 Площадь прямоугольника

1.4.3 Площадь трапеции

1.4.4 Площадь четырёхугольника

1.4.5 Универсальная формула

1.4.6 Площадь n-угольника

1.4.7 Вычисление площади многоугольника по координатам его вершин

1.4.8 Формула Пика

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

1.6 Равносоставленность треугольников. Теорема Больяя-Гервина

1.7 Отношение площадей подобных треугольников

1.8 Фигуры с наибольшей площадью

1.8.1 Трапеция или прямоугольник

1.8.2 Замечательное свойство квадрата

1.8.3 Участки другой формы

1.8.4 Треугольник с наибольшей площадью

Глава 2. Методические особенности изучения площадей многоугольников в математических классах

2.1 Тематическое планирование и особенности преподавания в классах с углубленным изучением математики

2.2 Методика проведения уроков

2.3 Результаты опытно-экспериментальной работы

Заключение

Литература

Введение

Тема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.

Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования.

Наряду с решением основной задачи углубленное изучение математики предусматривает формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе.

Квалификационная работа включает содержание курса математики общеобразовательной школы и ряд дополнительных вопросов, непосредственно примыкающих к этому курсу и углубляющих его по основным идейным линиям.

Включение дополнительных вопросов преследует две взаимосвязанные цели. С одной стороны, это создание в совокупности с основными разделами курса базы для удовлетворения интересов и развития способностей учащихся, имеющих склонность к математике, с другой – выполнение содержательных пробелов основного курса, придающее содержанию углубленного изучения необходимую целостность.

Квалификационная работа состоит из введения, двух глав, заключения и цитируемой литературы. В первой главе рассматриваются теоретические основы изучения площадей многоугольников, а во второй главе – непосредственно уже методические особенности изучения площадей.

Глава 1. Теоретические основы изучения площадей многоугольников

1.1Вычисление площадей в древности

Зачатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.

Еще в 4 – 5 тысяч лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служит эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, или можно заполнить плоскость без пробелов.

В древнем Китае мерой площади был прямоугольник. Когда каменщики определяли площадь прямоугольной стены дома, они перемножали высоту и ширину стены. Таково принятое в геометрии определение: площадь прямоугольника равна произведению его смежных сторон. Обе эти стороны должны быть выражены в одних и тех же линейных единицах. Их произведение и составит площадь прямоугольника, выраженную в соответствующих квадратных единицах. Скажем, если высота и ширина стены измерены в дециметрах, то произведение обоих измерений будет выражено в квадратных дециметрах. И если площадь каждой облицовочной Плотки составляет квадратный дециметр, то полученное произведение укажет число плиток, нужное для облицовки. Это вытекает из утверждения, положенного в основу измерения площадей: площадь фигуры, составленной из непересекающихся фигур, равна сумме их площадей.

Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам, и умножалась на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту и т.п. Для вычисления площади

четырехугольника со сторонами (рис. 1.1) применялась формула (1.1)

т.е. умножались полусуммы противоположных сторон.

Эта формула явно неверна для любого четырехугольника, из нее вытекает, в частности, что площади всех ромбов одинаковы. Между тем, очевидно, что у таких ромбов площади зависят от величины углов при вершинах. Данная формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь четырехугольников, у которых углы близки к прямым.

Для определения площади

равнобедренного треугольника (рис. 1.2), в котором , египтяне пользовались приближенной формулой:

(1.2) Рис. 1.2 Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой треугольника, иными словами, чем ближе вершина (и ) к основанию высоты из . Вот почему приближенная формула (1.2) применима лишь для треугольников с сравнительно малым углом при вершине.

Но уже древние греки умели правильно находить площади многоугольников. В своих «Началах» Евклид не употребляет слова «площадь», так как он под самим словом «фигура» понимает часть плоскости, ограниченную той или иной замкнутой линией. Евклид не выражает результат измерения площади числом, а сравнивает площади разных фигур между собой.

Как и другие ученые древности, Евклид занимается вопросами превращения одних фигур в другие, им равновеликие. Площадь составной фигуры не изменится, если ее части расположить по-другому, но без пересечения. Поэтому, например, можно, исходя из формул площади прямоугольника, находить формулы площадей других фигур. Так, треугольник разбивается на такие части, из которых затем можно составить равновеликий ему прямоугольник. Из этого построения следует, что площадь треугольника равна половине произведения его основания на высоту. Прибегая к подобной перекройке, находят, что площадь параллелограмма равна произведению основания на высоту, площадь трапеции – произведению полусуммы оснований на высоту.

Когда каменщикам приходится облицовывать стену сложной конфигурации, они могут определить площадь стены, подсчитав число пошедших на облицовку плиток. Некоторые плитки, естественно, придется обкалывать, чтобы края облицовки совпали с кромкой стены. Число всех пошедших в работу плиток оценивает площадь стены с избытком, число необломанных плиток – с недостатком. С уменьшением размеров клеток количество отходов уменьшается, и площадь стены, определяемая через число плиток, вычисляется все точнее.

Одним из поздних греческих математиков – энциклопедистов, труды которого имели главным образом прикладной характер, был Герон Александрийский, живший в 1 в. н. э. Будучи выдающимся инженером, он был назван также «Герон Механик». В своем произведении «Диоптрика» Герон описывает разные машины и практические измерительные инструменты.

Одна из книг Герона была названа им «Геометрика» и является своего рода сборником формул и соответствующих задач. Она содержит примеры на вычисление площадей квадратов, прямоугольников и треугольников. О нахождении площади треугольника по его сторонам Герон пишет: « Пусть, например, одна сторона треугольника имеет в длину 13 мерных шнуров, вторая 14 и третья 15. Чтобы найти площадь, поступают вот как. Сложи 13, 14 и 15; получится 42. Половина этого будет 21. Вычти из этого три стороны одну за другой; сперва вычти 13 – останется 8, затем 14 – останется 7 и, наконец, 15 – останется 6. А теперь перемножь их: 21раз по 8 даст 168, возьми это 7 раз – получится 1176, а это еще 6 раз – получится 7056. Отсюда квадратный корень будет 84. Вот сколько мерных шнуров будет в площади треугольника».

Умение определять площадь различных фигур играет немалую роль в жизни каждого человека. Рано или поздно приходится иметь дело с этими знаниями. К примеру, в процессе ремонта помещения для определения необходимого количества рулонов обоев, линолеума, паркета, плитки в ванную или на кухню нужно уметь рассчитывать необходимую площадь.

Знаниями в области геометрии пользовались еще в древнем Вавилоне и других странах. На первых шагах к культуре всегда возникала необходимость измерить участок, расстояние. При строительстве первых значительных сооружений требовались умения выдерживать вертикаль, спроектировать план.

Роль эстетических потребностей людей также имела немалое значение. Украшение жилища, одежды, рисование картин способствовало процессу формирования и накопления сведений в области геометрии, которые люди тех времён добывали опытным путем, по крупицам и передавали из поколения в поколение.

Сегодня знания геометрии необходимы и закройщику, и строителю, и архитектору и каждому простому человеку в быту.

Поэтому нужно учиться рассчитывать площадь различных фигур, и помнить, что каждая из формул может пригодиться впоследствии на практике, в том числе, и формула правильного шестиугольника. Шестиугольником называется такая многоугольная фигура, общее количество углов которой равно шести.

Площадь правильного шестиугольника

Правильным шестиугольником называют шестиугольную фигуру, которая имеет равные стороны. Углы у правильного шестиугольника также между собой равны.

В повседневной жизни мы часто можем встретить предметы, имеющие форму правильного шестиугольника. Это и металлическая гайка, и ячейки пчелиных сот, и структура снежинки. Шестиугольными фигурами отлично заполняются плоскости. Так, например, при мощении тротуарной плитки мы можем наблюдать, как плитка укладывается одна возле другой, не оставляя пустых мест.

Свойства правильного шестиугольника

  • Правильный шестиугольник всегда будет иметь равные углы, каждый из которых составляет 120˚.
  • Сторона фигуры равняется радиусу описанной окружности.
  • Все стороны в правильном шестиугольнике равны.
  • Правильный шестиугольник плотно заполняет плоскость.

Площадь правильного шестиугольника можно рассчитать, разбив его на шесть треугольников, каждый из которых будет иметь равные стороны.

Для расчета площади правильного треугольника используется следующая формула:

Зная площадь одного из треугольников, можно легко рассчитать площадь шестиугольника. Формула для ее расчета проста: поскольку правильный шестиугольник - это шесть равных треугольников, следует площадь нашего треугольника умножить на 6.

Если провести от центра фигуры к любой из ее сторон перпендикуляр, получим отрезок, который называется апофема. Рассмотрим, как найти площадь шестиугольника при известной апофеме:

  1. Площадь = 1/2*периметр*апофему.
  2. Предположим, наша апофема равняется 5√3 см.

  1. Используя апофему, находим периметр: Поскольку апофема расположена перпендикулярно к стороне шестиугольника, то углы треугольника, созданного при помощи апофемы, будут равняться 30˚-60˚-90˚. Каждая сторона полученного треугольника будет соответствовать: x-x√3-2x, где короткая сторона, которая расположена напротив угла в 30˚- это x, длинная сторона, расположенная напротив угла в 60˚ - это x√3, а гипотенуза - 2x.
  2. Поскольку апофема представлена, как x√3, можно подставить ее в формулу a = x√3 и решить. Если, к примеру, апофема = 5√3, тогда подставим эту величину в формулу и получим: 5√3 см = x√3, или x = 5 см.
  3. Итак, короткая сторона треугольника равняется 5 см. поскольку эта величина является половиной длины стороны шестиугольника, умножаем 5 на 2 и получим 10 см, которая является длиной стороны.
  4. Зная длину стороны, умножим её на 6 и получим периметр шестиугольника:10 см х 6 = 60 см
  5. Подставим полученные результаты в нашу формулу:

Площадь = 1/2*периметр*апофему

Площадь = ½*60см*5√3

Теперь осталось упростить ответ, чтобы избавиться от квадратных корней, а полученный результат укажем в квадратных сантиметрах:

½ * 60 см * 5√3 см =30 * 5√3 см =150 √3 см =259.8 см²

Видео о том, как найти площадь правильного шестиугольника

Площадь неправильного шестиугольника

Существует несколько вариантов определения площади неправильного шестиугольника:

  • Метод трапеции.
  • Метод расчета площади неправильных многоугольников при помощи оси координат.
  • Метод разбивания шестиугольника на другие фигуры.

В зависимости от исходных данных, которые вам будут известны, подбирается подходящий метод.

Метод трапеции

Площадь шестиугольника, имеющего произвольную (неправильную) форму, рассчитывается методом трапеции, суть которого состоит в разделении шестиугольника на отдельные трапеции и последующим вычислением площади каждой из них.

Метод с осями координат

Кроме этого, площадь неправильного шестиугольника можно рассчитать при помощи метода расчета площади неправильных многоугольников. Рассмотрим его на следующем примере:

Вычисление будем выполнять методом использования координат вершин многоугольника:

  1. На этом этапе следует сделать таблицу и записать координаты вершин x и y. Выбираем вершины в последовательном порядке по направлению против часовой стрелки, завершив конец списка повторной записью координаты первой вершины:

  1. Теперь следует умножить значения координаты х 1-й вершины на y 2-й вершины и продолжить таким образом умножение далее. Затем необходимо сложить полученные результаты. В нашем случае получилось 82:

  1. Последовательно умножаем значения координат y1-й вершины на значения координат х 2-й вершины. Суммируем полученные результаты. В нашем случае получилось 38:

  1. Вычитаем сумму, которую получили на четвертом этапе из суммы, которая получилась на третьем этапе: 82 – (-38) = 120

  1. Теперь необходимо разделить результат, который был получен на предыдущем этапе и найдем площадь нашей фигуры: S= 120/2 = 60 см²

Метод разбивания шестиугольника на другие фигуры

Каждый многоугольник можно разделить на несколько других фигур. Это могут быть треугольники, трапеции, прямоугольники. Исходя из известных данных, пользуясь формулами определения площадей перечисленных фигур, последовательно вычисляются их площади и затем суммируются.

Некоторые неправильные шестиугольники состоят из двух параллелограммов. Для определения площади параллелограмма следует умножить его длину на ширину и затем сложить две уже известные площади.

Видео о том, как найти площадь многоугольника

Площадь равностороннего шестиугольника

Равносторонний шестиугольник имеет шесть равных сторон и является правильным шестиугольником.

Площадь равностороннего шестиугольника равняется 6 площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны, поэтому для нахождения площади такого шестиугольника достаточно будет знать площадь хотя бы одного треугольника.

Для нахождения площади равностороннего шестиугольника используется, конечно же, формула площади правильного шестиугольника, описанная выше.

А Вы знали, как найти площадь шестиугольника? Как думаете, где эти знания пригодятся Вам в жизни? Поделитесь своим мнением в

Площадь многоугольника. Друзья! К вашему вниманию пару задачек с многоугольником и вписанной в него окружностью. Существует формула, которой связывается радиус указанной окружности и периметр с площадью такого многоугольника. Вот она:

Как выводится эта формула? Просто!

Имеем многоугольник и вписанную окружность. *Рассмотрим вывод на примере пятиугольника. Разобьём его на треугольники (соединим центр окружности и вершины отрезками). Получается, что у каждого треугольника основание является стороной многоугольника, а высоты образованных треугольников равны радиусу вписанной окружности:

Используя формулу площади треугольника можем записать:


Вынесем общие множители:

Уверен, сам принцип вам понятен.

*При выводе формулы количество сторон взятого многоугольника не имеет значения. В общем виде вывод формулы выглядел бы так:


*Дополнительная информация!

Известна формула радиуса окружности вписанной в треугольник

Не трудно заметить, что она исходит из полученной нами формулы, посмотрите (a,b,c – это стороны треугольника):

27640. Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

Вычисляем:

Ещё пара задач с многоугольниками.

27930. Угол между стороной правильного n -угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54 0 . Найдите n .

Если угол между радиусом окружности и стороной многоугольника равен 54 0 , то угол между сторонами многоугольника будет равен 108 0 . Тут необходимо вспомнить формулу угла правильного многоугольника:

Остаётся подставить в формулу значение угла и вычислить n:

27595. Периметры двух подобных многоугольников относятся как 2:7. Площадь меньшего многоугольника равна 28. Найдите площадь большего многоугольника.

Здесь нужно вспомнить о том, что если линейные размеры фигуры увеличивается в k раз, то площадь фигуры увеличивается в k 2 раз. *Свойство подобия фигур.

Периметр большего многоугольника больше периметра меньшего в 7/2 раза, значит площадь увеличилась в (7/2) 2 раза. Таким образом, площадь большего многоугольника равна.