Пример арифметической прогрессии. Арифметическая прогрессия – числовая последовательность

В чём главная суть формулы?

Эта формула позволяет найти любой ПО ЕГО НОМЕРУ "n" .

Разумеется, надо знать ещё первый член a 1 и разность прогрессии d , ну так без этих параметров конкретную прогрессию и не запишешь.

Заучить (или зашпаргалить) эту формулу мало. Надо усвоить её суть и поприменять формулу в различных задачках. Да ещё и не забыть в нужный момент, да...) Как не забыть - я не знаю. А вот как вспомнить, при необходимости, - точно подскажу. Тем, кто урок до конца осилит.)

Итак, разберёмся с формулой n-го члена арифметической прогрессии.

Что такое формула вообще - мы себе представляем.) Что такое арифметическая прогрессия, номер члена, разность прогресии - доступно изложено в предыдущем уроке. Загляните, кстати, если не читали. Там всё просто. Осталось разобраться, что такое n-й член.

Прогрессию в общем виде можно записать в виде ряда чисел:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - обозначает первый член арифметической прогрессии, a 3 - третий член, a 4 - четвёртый, и так далее. Если нас интересует пятый член, скажем, мы работаем с a 5 , если сто двадцатый - с a 120 .

А как обозначить в общем виде любой член арифметической прогрессии, с любым номером? Очень просто! Вот так:

a n

Это и есть n-й член арифметической прогрессии. Под буквой n скрываются сразу все номера членов: 1, 2, 3, 4, и так далее.

И что нам даёт такая запись? Подумаешь, вместо цифры буковку записали...

Эта запись даёт нам мощный инструмент для работы с арифметической прогрессией. Используя обозначение a n , мы можем быстро найти любой член любой арифметической прогрессии. И ещё кучу задач по прогрессии решить. Сами дальше увидите.

В формуле n-го члена арифметической прогрессии:

a n = a 1 + (n-1)d

a 1 - первый член арифметической прогрессии;

n - номер члена.

Формула связывает ключевые параметры любой прогрессии: a n ; a 1 ; d и n . Вокруг этих параметров и крутятся все задачки по прогрессии.

Формула n-го члена может использоваться и для записи конкретной прогрессии. Например, в задаче может быть сказано, что прогрессия задана условием:

a n = 5 + (n-1)·2.

Такая задачка может и в тупик поставить... Нет ни ряда, ни разности... Но, сравнивая условие с формулой, легко сообразить, что в этой прогрессии a 1 =5, а d=2.

А бывает ещё злее!) Если взять то же условие: a n = 5 + (n-1)·2, да раскрыть скобки и привести подобные? Получим новую формулу:

a n = 3 + 2n.

Это Только не общая, а для конкретной прогрессии. Вот здесь и таится подводный камень. Некоторые думают, что первый член - это тройка. Хотя реально первый член - пятёрка... Чуть ниже мы поработаем с такой видоизменённой формулой.

В задачах на прогрессию встречается ещё одно обозначение - a n+1 . Это, как вы догадались, "эн плюс первый" член прогрессии. Смысл его прост и безобиден.) Это член прогрессии, номер которого больше номера n на единичку. Например, если в какой-нибудь задаче мы берём за a n пятый член, то a n+1 будет шестым членом. И тому подобное.

Чаще всего обозначение a n+1 встречается в рекуррентных формулах. Не пугайтесь этого страшного слова!) Это просто способ выражения члена арифметической прогрессии через предыдущий. Допустим, нам дана арифметическая прогрессия вот в таком виде, с помощью рекуррентной формулы:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвёртый - через третий, пятый - через четвёртый, и так далее. А как посчитать сразу, скажем двадцатый член, a 20 ? А никак!) Пока 19-й член не узнаем, 20-й не посчитать. В этом и есть принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная работает только через предыдущий член, а формула n-го члена - через первый и позволяет сразу находить любой член по его номеру. Не просчитывая весь ряд чисел по порядочку.

В арифметической прогрессии рекуррентную формулу легко превратить в обычную. Посчитать пару последовательных членов, вычислить разность d, найти, если надо, первый член a 1 , записать формулу в обычном виде, да и работать с ней. В ГИА подобные задания частенько встречаются.

Применение формулы n-го члена арифметической прогрессии.

Для начала рассмотрим прямое применение формулы. В конце предыдущего урока была задачка:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

Эту задачку можно безо всяких формул решить, просто исходя из смысла арифметической прогрессии. Прибавлять, да прибавлять... Часок-другой.)

А по формуле решение займёт меньше минуты. Можете засекать время.) Решаем.

В условиях приведены все данные для использования формулы: a 1 =3, d=1/6. Остаётся сообразить, чему равно n. Не вопрос! Нам надо найти a 121 . Вот и пишем:

Прошу обратить внимание! Вместо индекса n появилось конкретное число: 121. Что вполне логично.) Нас интересует член арифметической прогрессии номер сто двадцать один. Вот это и будет наше n. Именно это значение n = 121 мы и подставим дальше в формулу, в скобки. Подставляем все числа в формулу и считаем:

a 121 = 3 + (121-1)·1/6 = 3+20 = 23

Вот и все дела. Так же быстро можно было бы найти и пятьсот десятый член, и тысяча третий, любой. Ставим вместо n нужный номер в индексе у буквы "a" и в скобках, да и считаем.

Напомню суть: эта формула позволяет найти любой член арифметической прогрессии ПО ЕГО НОМЕРУ "n" .

Решим задание похитрее. Пусть нам попалась такая задачка:

Найдите первый член арифметической прогрессии (a n), если a 17 =-2; d=-0,5.

Если возникли затруднения, подскажу первый шаг. Запишите формулу n-го члена арифметической прогрессии! Да-да. Руками запишите, прямо в тетрадке:

a n = a 1 + (n-1)d

А теперь, глядя на буквы формулы, соображаем, какие данные у нас есть, а чего не хватает? Имеется d=-0,5, имеется семнадцатый член... Всё? Если считаете, что всё, то задачу не решите, да...

У нас ещё имеется номер n ! В условии a 17 =-2 спрятаны два параметра. Это и значение семнадцатого члена (-2), и его номер (17). Т.е. n=17. Эта "мелочь" часто проскакивает мимо головы, а без неё, (без "мелочи", а не головы!) задачу не решить. Хотя... и без головы тоже.)

Теперь можно просто тупо подставить наши данные в формулу:

a 17 = a 1 + (17-1)·(-0,5)

Ах да, a 17 нам известно, это -2. Ну ладно, подставим:

-2 = a 1 + (17-1)·(-0,5)

Вот, в сущности, и всё. Осталось выразить первый член арифметической прогрессии из формулы, да посчитать. Получится ответ: a 1 = 6.

Такой приём - запись формулы и простая подстановка известных данных - здорово помогает в простых заданиях. Ну, надо, конечно, уметь выражать переменную из формулы, а что делать!? Без этого умения математику можно вообще не изучать...

Ещё одна популярная задачка:

Найдите разность арифметической прогрессии (a n), если a 1 =2; a 15 =12.

Что делаем? Вы удивитесь, пишем формулу!)

a n = a 1 + (n-1)d

Соображаем, что нам известно: a 1 =2; a 15 =12; и (специально выделю!) n=15. Смело подставляем в формулу:

12=2 + (15-1)d

Считаем арифметику.)

12=2 + 14d

d =10/14 = 5/7

Это правильный ответ.

Так, задачи на a n , a 1 и d порешали. Осталось научиться номер находить:

Число 99 является членом арифметической прогрессии (a n), где a 1 =12; d=3. Найти номер этого члена.

Подставляем в формулу n-го члена известные нам величины:

a n = 12 + (n-1)·3

На первый взгляд, здесь две неизвестные величины: a n и n. Но a n - это какой-то член прогрессии с номером n ... И этот член прогрессии мы знаем! Это 99. Мы не знаем его номер n, так этот номер и требуется найти. Подставляем член прогрессии 99 в формулу:

99 = 12 + (n-1)·3

Выражаем из формулы n , считаем. Получим ответ: n=30.

А теперь задачка на ту же тему, но более творческая):

Определите, будет ли число 117 членом арифметической прогрессии (a n):

-3,6; -2,4; -1,2 ...

Опять пишем формулу. Что, нет никаких параметров? Гм... А глазки нам зачем дадены?) Первый член прогрессии видим? Видим. Это -3,6. Можно смело записать: a 1 =-3,6. Разность d можно из ряда определить? Легко, если знаете, что такое разность арифметической прогрессии:

d = -2,4 - (-3,6) = 1,2

Так, самое простое сделали. Осталось разобраться с неизвестным номером n и непонятным числом 117. В предыдущей задачке хоть было известно, что дан именно член прогрессии. А здесь и того не знаем... Как быть!? Ну, как быть, как быть... Включить творческие способности!)

Мы предположим, что 117 - это, всё-таки, член нашей прогрессии. С неизвестным номером n . И, точно как в предыдущей задаче, попробуем найти этот номер. Т.е. пишем формулу (да-да!)) и подставляем наши числа:

117 = -3,6 + (n-1)·1,2

Опять выражаем из формулы n , считаем и получаем:

Опаньки! Номер получился дробный! Сто один с половиной. А дробных номеров в прогрессиях не бывает. Какой вывод сделаем? Да! Число 117 не является членом нашей прогрессии. Оно находится где-то между сто первым и сто вторым членом. Если бы номер получился натуральным, т.е. положительным целым, то число было бы членом прогрессии с найденным номером. А в нашем случае, ответ задачи будет: нет.

Задача на основе реального варианта ГИА:

Арифметическая прогрессия задана условием:

a n = -4 + 6,8n

Найти первый и десятый члены прогрессии.

Здесь прогрессия задана не совсем привычным образом. Формула какая-то... Бывает.) Однако, эта формула (как я писал выше) - тоже формула n-го члена арифметической прогрессии! Она тоже позволяет найти любой член прогрессии по его номеру.

Ищем первый член. Тот, кто думает. что первый член - минус четыре, фатально ошибается!) Потому, что формула в задаче - видоизменённая. Первый член арифметической прогрессии в ней спрятан. Ничего, сейчас отыщем.)

Так же, как и в предыдущих задачах, подставляем n=1 в данную формулу:

a 1 = -4 + 6,8·1 = 2,8

Вот! Первый член 2,8, а не -4!

Аналогично ищем десятый член:

a 10 = -4 + 6,8·10 = 64

Вот и все дела.

А теперь, тем кто дочитал до этих строк, - обещанный бонус.)

Предположим, в сложной боевой обстановке ГИА или ЕГЭ, вы подзабыли полезную формулу n-го члена арифметической прогрессии. Что-то припоминается, но неуверенно как-то... То ли n там, то ли n+1, то ли n-1... Как быть!?

Спокойствие! Эту формулку легко вывести. Не очень строго, но для уверенности и правильного решения точно хватит!) Для вывода достаточно помнить элементарный смысл арифметической прогрессии и иметь пару-тройку минут времени. Нужно просто нарисовать картинку. Для наглядности.

Рисуем числовую ось и отмечаем на ней первый. второй, третий и т.п. члены. И отмечаем разность d между членами. Вот так:

Смотрим на картинку и соображаем: чему равняется второй член? Второй одно d :

a 2 =a 1 +1 ·d

Чему равняется третий член? Третий член равняется первый член плюс два d .

a 3 =a 1 +2 ·d

Улавливаете? Я не зря некоторые слова выделяю жирным шрифтом. Ну ладно, ещё один шаг).

Чему равняется четвёртый член? Четвёртый член равняется первый член плюс три d .

a 4 =a 1 +3 ·d

Пора сообразить, что количество промежутков, т.е. d , всегда на один меньше, чем номер искомого члена n . Т.е., до номера n, количество промежутков будет n-1. Стало быть, формула будет (без вариантов!):

a n = a 1 + (n-1)d

Вообще, наглядные картинки очень помогают решать многие задачи в математике. Не пренебрегайте картинками. Но если уж картинку нарисовать затруднительно, то... только формула!) Кроме того, формула n-го члена позволяет подключить к решению весь мощный арсенал математики - уравнения, неравенства, системы и т.д. Картинку-то в уравнение не вставишь...

Задания для самостоятельного решения.

Для разминки:

1. В арифметической прогрессии (a n) a 2 =3; a 5 =5,1. Найти a 3 .

Подсказка: по картинке задача решается секунд за 20... По формуле - сложнее получается. Но для освоения формулы - полезнее.) В Разделе 555 эта задачка решена и по картинке, и по формуле. Почувствуйте разницу!)

А это - уже не разминка.)

2. В арифметической прогрессии (a n) a 85 =19,1; a 236 =49, 3. Найти a 3 .

Что, неохота картинку рисовать?) Ещё бы! Уж лучше по формуле, да...

3. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сто двадцать пятый член этой прогрессии.

В этом задании прогрессия задана рекуррентным способом. Но считать до сто двадцать пятого члена... Не всем такой подвиг под силу.) Зато формула n-го члена по силам каждому!

4. Дана арифметическая прогрессия (a n):

-148; -143,8; -139,6; -135,4, .....

Найти номер наименьшего положительного члена прогрессии.

5. По условию задания 4 найти сумму наименьшего положительного и наибольшего отрицательного членов прогрессии.

6. Произведение пятого и двенадцатого членов возрастающей арифметической прогрессии равно -2,5, а сумма третьего и одиннадцатого членов равна нулю. Найти a 14 .

Не самая простая задачка, да...) Здесь способ "на пальцах" не прокатит. Придётся формулы писать да уравнения решать.

Ответы (в беспорядке):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Получилось? Это приятно!)

Не всё получается? Бывает. Кстати, в последнем задании есть один тонкий момент. Внимательность при чтении задачи потребуется. И логика.

Решение всех этих задач подробно разобрано в Разделе 555. И элемент фантазии для четвёртой, и тонкий момент для шестой, и общие подходы для решения всяких задач на формулу n-го члена - всё расписано. Рекомендую.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Арифметическая прогрессия - это ряд чисел, в котором каждое число больше (или меньше) предыдущего на одну и ту же величину.

Эта тема частенько представляется сложной и непонятной. Индексы у буковок, n-й член прогрессии, разность прогрессии - всё это как-то смущает, да... Разберёмся со смыслом арифметической прогрессии и всё сразу наладится.)

Понятие арифметической прогрессии.

Арифметическая прогрессия - понятие очень простое и чёткое. Сомневаетесь? Зря.) Смотрите сами.

Я напишу незаконченный ряд чисел:

1, 2, 3, 4, 5, ...

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый... э-э-э..., короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

2, 5, 8, 11, 14, ...

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

Если сообразили, что это число 20 - я вас поздравляю! Вы не только почувствовали ключевые моменты арифметической прогрессии, но и успешно употребили их в дело! Если не сообразили - читаем дальше.

А теперь переведём ключевые моменты из ощущений в математику.)

Первый ключевой момент.

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое... А тут продлить ряд, найти число ряда...

Ничего страшного. Просто прогрессии - это первое знакомство с новым разделом математики. Раздел называется "Ряды" и работает именно с рядами чисел и выражений. Привыкайте.)

Второй ключевой момент.

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

В первом примере эта разница - единичка. Какое число ни возьми, оно больше предыдущего на единичку. Во втором - тройка. Любое число больше предыдущего на тройку. Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать последующие числа.

Третий ключевой момент.

Этот момент не бросается в глаза, да... Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Вот и вся суть.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Внушает?) Буковки, индексы какие-то... А задание, между прочим - проще некуда. Просто нужно понять смысл терминов и обозначений. Сейчас мы это дело освоим и вернёмся к заданию.

Термины и обозначения.

Арифметическая прогрессия - это ряд чисел, в котором каждое число отличается от предыдущего на одну и ту же величину.

Эта величина называется . Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Разность арифметической прогрессии - это величина, на которую любое число прогрессии больше предыдущего.

Один важный момент. Прошу обратить внимание на слово "больше". Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Для расчёта, скажем, второго числа ряда, надо к первому числу прибавить эту самую разность арифметической прогрессии. Для расчёта пятого - разность надо прибавить к четвёртому, ну и т.п.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

8; 13; 18; 23; 28; .....

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Например:

8; 3; -2; -7; -12; .....

Здесь каждое число получается тоже прибавлением к предыдущему, но уже отрицательного числа, -5.

Кстати, при работе с прогрессией очень полезно бывает сразу определить её характер - возрастающая она, или убывающая. Это здорово помогает сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Как найти d ? Очень просто. Надо от любого числа ряда отнять предыдущее число. Вычесть. Кстати, результат вычитания называется "разность".)

Определим, например, d для возрастающей арифметической прогрессии:

2, 5, 8, 11, 14, ...

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Брать можно именно любое число прогрессии, т.к. для конкретной прогрессии d - всегда одно и то же. Хоть где-нибудь в начале ряда, хоть в середине, хоть где угодно. Брать нельзя только самое первое число. Просто потому, что у самого первого числа нет предыдущего. )

Кстати, зная, что d = 3 , найти седьмое число этой прогрессии очень просто. Прибавим 3 к пятому числу - получим шестое, это будет 17. Прибавим к шестому числу тройку, получим седьмое число - двадцать.

Определим d для убывающей арифметической прогрессии:

8; 3; -2; -7; -12; .....

Напоминаю, что, независимо от знаков, для определения d надо от любого числа отнять предыдущее. Выбираем любое число прогрессии, например -7. Предыдущее у него - число -2. Тогда:

d = -7 - (-2) = -7 + 2 = -5

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Каждый член прогрессии имет свой номер. Номера идут строго по порядочку, безо всяких фокусов. Первый, второй, третий, четвёртый и т.д. Например, в прогрессии 2, 5, 8, 11, 14, ... двойка - это первый член, пятёрка - второй, одиннадцать - четвёртый, ну, вы поняли...) Прошу чётко осознать - сами числа могут быть совершенно любые, целые, дробные, отрицательные, какие попало, но нумерация чисел - строго по порядку!

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a . Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - это первое число, a 3 - третье, и т.п. Ничего хитрого. Записать этот ряд кратко можно вот так: (a n ).

Прогрессии бывают конечные и бесконечные.

Конечная прогрессия имеет ограниченное количество членов. Пять, тридцать восемь, сколько угодно. Но - конечное число.

Бесконечная прогрессия - имеет бесконечное количество членов, как можно догадаться.)

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

a 1 , a 2 , a 3 , a 4 , a 5 .

Или так, если членов много:

a 1 , a 2 , ... a 14 , a 15 .

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

(a n), n = 20

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

1. Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Переводим задание на понятный язык. Дана бесконечная арифметическая прогрессия. Известен второе число этой прогрессии: a 2 = 5. Известна разность прогрессии: d = -2,5. Нужно найти первый, третий, четвёртый, пятый и шестой члены этой прогрессии.

Для наглядности запишу ряд по условию задачки. Первые шесть членов, где второй член - пятёрка:

a 1 , 5 , a 3 , a 4 , a 5 , a 6 ,....

a 3 = a 2 + d

Подставляем в выражение a 2 = 5 и d = -2,5 . Не забываем про минус!

a 3 =5+(-2,5)=5 - 2,5 = 2,5

Третий член получился меньше второго. Всё логично. Если число больше предыдущего на отрицательную величину, значит само число получится меньше предыдущего. Прогрессия - убывающая. Ладно, учтём.) Считаем четвёртый член нашего ряда:

a 4 = a 3 + d

a 4 =2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5 =0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6 =-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члены с третьего по шестой вычислили. Получился такой ряд:

a 1 , 5 , 2,5 , 0 , -2,5 , -5 , ....

Остаётся найти первый член a 1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a 2 , а отнять:

a 1 = a 2 - d

a 1 =5-(-2,5)=5 + 2,5=7,5

Вот и все дела. Ответ задания:

7,5, 5, 2,5, 0, -2,5, -5, ...

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Запоминаем:

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Разумеется, вся предыдущая алгебра не отменяется.) К прогрессии прицепляются и неравенства, и уравнения, и прочие вещи. Но по самой прогрессии - всё крутится вокруг трёх параметров.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a 1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: "конечную" и "n=5 ". Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Остаётся записать ответ:

3,6; 4; 4,4; 4,8; 5,2.

Ещё задание:

3. Определите, будет ли число 7 членом арифметической прогрессии (a n), если a 1 = 4,1; d = 1,2.

Хм... Кто ж его знает? Как определить-то?

Как-как... Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

Ответ: нет.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

...; 15; х; 9; 6; ...

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d . Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Зато есть три числа и - внимание! - слово "последовательных" в условии. Это значит, что числа идут строго по порядку, без пропусков. А есть ли в этом ряду два соседних известных числа? Да, есть! Это 9 и 6. Стало быть, мы можем вычислить разность арифметической прогрессии! От шестёрки отнимаем предыдущее число, т.е. девятку:

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Вот и всё. Ответ: х=12

Следующие задачки решаем самостоятельно. Замечание: эти задачки - не на формулы. Чисто на понимание смысла арифметической прогрессии.) Просто записываем ряд с числами-буквами, смотрим и соображаем.

5. Найдите первый положительный член арифметической прогрессии, если a 5 = -3; d = 1,1.

6. Известно, что число 5,5 является членом арифметической прогрессии (a n), где a 1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a 2 = 4; a 5 = 15,1. Найдите a 3 .

8. Выписано несколько последовательных членов арифметической прогрессии:

...; 15,6; х; 3,4; ...

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

10. Известно, что в арифметической прогрессии a 2 = 5; a 6 = -5. Найдите a 1 .

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

Кстати, в задачке про поезд есть две проблемки, на которых часто спотыкается народ. Одна - чисто по прогрессии, а вторая - общая для любых задач по математике, да и физике тоже. Это перевод размерностей из одной в другую. В показано, как надо эти проблемы решать.

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение "на пальцах" хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить "пять минут" на "тридцать пять минут", задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Прежде чем мы начнем решать задачи на арифметическую прогрессию , рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия - это частный случай числовой последовательности.

Числовая последовательность - это числовое множество, каждый элемент которого имеет свой порядковый номер . Элементы этого множества называются членами последовательности. Порядковый номер элемента последовательности обозначается индексом:

Первый элемент последовательности;

Пятый элемент последовательности;

- "энный" элемент последовательности, т.е. элемент, "стоящий в очереди" под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность - это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1 . Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй - время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут, , то есть в четверг - 248 минут, а , то есть в пятницу всего 15.

2 . Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например, , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3 . Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность ,

Мы можем находить значения членов последовательности один за другим , начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным , от латинского слова recurro - возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия - это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.


Число называется разностью арифметической прогрессии . Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.

Если title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей .

Например, 2; 5; 8; 11;...

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей .

Например, 2; -1; -4; -7;...

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной .

Например, 2;2;2;2;...

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

, и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

, и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с title="k>l">, равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию .

1 . Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2 . Дана арифметическая прогрессия -31; -27;...

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ;

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Или арифметическая - это вид упорядоченной числовой последовательности, свойства которой изучают в школьном курсе алгебры. В данной статье подробно рассмотрен вопрос, как найти сумму арифметической прогрессии.

Что это за прогрессия?

Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.

Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:

Здесь i - порядковый номер элемента ряда a i . Таким образом, зная всего одно начальное число, можно с легкостью восстановить весь ряд. Параметр d в формуле называется разностью прогрессии.

Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:

a n = a 1 + d * (n - 1).

То есть для нахождения значения n-го по порядку элемента следует n-1 раз добавить разность d к первому элементу a 1 .

Чему равна сумма арифметической прогрессии: формула

Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.

Если обобщить эти рассуждения, то можно записать следующее выражение:

S n = n * (a 1 + a n) / 2.

Это выражение показывает, что совсем не обязательно суммировать подряд все элементы, достаточно знать значение первого a 1 и последнего a n , а также общего числа слагаемых n.

Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.

Сумма элементов от m до n: формула

Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?

Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:

S m n = (n - m + 1) * (a m + a n) / 2.

Пример использования формул

Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.

Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:

Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.